Probe-target hybridization depends on spatial uniformity of initial concentration condition across large-format chips.
Antibody Affinity
Antigen-Antibody Reactions
Brain Neoplasms
/ pathology
Cell Line, Tumor
Dose-Response Relationship, Drug
Dose-Response Relationship, Immunologic
Glioblastoma
/ pathology
High-Throughput Screening Assays
/ instrumentation
Humans
Hydrogels
Immunoassay
/ methods
Immunoblotting
/ instrumentation
Immunohistochemistry
/ methods
Nucleic Acid Hybridization
Protein Array Analysis
Single-Cell Analysis
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 05 2020
29 05 2020
Historique:
received:
14
02
2020
accepted:
23
04
2020
entrez:
31
5
2020
pubmed:
31
5
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Diverse assays spanning from immunohistochemistry (IHC), to microarrays (protein, DNA), to high-throughput screens rely on probe-target hybridization to detect analytes. These large-format 'chips' array numerous hybridization sites across centimeter-scale areas. However, the reactions are prone to intra-assay spatial variation in hybridization efficiency. The mechanism of spatial bias in hybridization efficiency is poorly understood, particularly in IHC and in-gel immunoassays, where immobilized targets are heterogeneously distributed throughout a tissue or hydrogel network. In these systems, antibody probe hybridization to a target protein antigen depends on the interplay of dilution, thermodynamic partitioning, diffusion, and reaction. Here, we investigate parameters governing antibody probe transport and reaction (i.e., immunoprobing) in a large-format hydrogel immunoassay. Using transport and bimolecular binding theory, we identify a regime in which immunoprobing efficiency (η) is sensitive to the local concentration of applied antibody probe solution, despite the antibody probe being in excess compared to antigen. Sandwiching antibody probe solution against the hydrogel surface yields spatially nonuniform dilution. Using photopatterned fluorescent protein targets and a single-cell immunoassay, we identify regimes in which nonuniformly distributed antibody probe solution causes intra-assay variation in background and η. Understanding the physicochemical factors affecting probe-target hybridization reduces technical variation in large-format chips, improving measurement precision.
Identifiants
pubmed: 32472029
doi: 10.1038/s41598-020-65563-3
pii: 10.1038/s41598-020-65563-3
pmc: PMC7260366
doi:
Substances chimiques
Hydrogels
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
8768Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM008155
Pays : United States
Références
J Immunol Methods. 2015 Feb;417:86-96
pubmed: 25536073
Angew Chem Int Ed Engl. 2014 Jul 28;53(31):8221-4
pubmed: 24931301
Nucleic Acids Res. 2009 Dec;37(22):e150
pubmed: 19828597
Biophys J. 1996 Mar;70(3):1505-13
pubmed: 8785307
Sci Rep. 2017 Oct 27;7(1):14248
pubmed: 29079756
Curr Protoc Cell Biol. 2001 May;Chapter 4:Unit 4.3
pubmed: 18228363
J Histochem Cytochem. 2010 Jul;58(7):577-84
pubmed: 19995945
Sci Rep. 2017 Sep 20;7(1):11921
pubmed: 28931934
MAbs. 2015;7(1):110-9
pubmed: 25530170
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5972-7
pubmed: 22474344
Arch Histol Cytol. 2004 Jun;67(2):115-34
pubmed: 15468952
Lancet. 1986 Feb 8;1(8476):307-10
pubmed: 2868172
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):419-24
pubmed: 22203961
Eur Polym J. 2015 Nov;72:386-412
pubmed: 26594056
Science. 2008 Dec 5;322(5907):1511-6
pubmed: 19023046
Biotechniques. 2010 Mar;48(3):197-209
pubmed: 20359301
Bioinformatics. 2009 Jun 1;25(11):1463-5
pubmed: 19346324
BMC Res Notes. 2013 Dec 18;6:542
pubmed: 24350799
Nature. 1999 Jan 14;397(6715):141-4
pubmed: 9923674
Nat Methods. 2014 Apr;11(4):417-22
pubmed: 24584193
J Immunol Methods. 2010 Jan 31;352(1-2):13-22
pubmed: 19854197
Anal Biochem. 2003 Jun 1;317(1):76-84
pubmed: 12729603
PLoS One. 2011;6(8):e23727
pubmed: 21858215
Nat Methods. 2014 Jul;11(7):749-55
pubmed: 24880876
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Ann N Y Acad Sci. 1997 Dec 31;831:179-207
pubmed: 9616711
Anal Chem. 2014 Mar 4;86(5):2601-9
pubmed: 24552202
Anal Chem. 2020 Jan 7;92(1):875-883
pubmed: 31756067
Anal Biochem. 2007 Sep 15;368(2):205-13
pubmed: 17544357
Nat Protoc. 2016 Aug;11(8):1508-30
pubmed: 27466711
J Neurosci Methods. 2006 Nov 15;158(1):64-74
pubmed: 16797719
PLoS One. 2014 Dec 12;9(12):e97213
pubmed: 25501559
J Mol Biol. 2012 Dec 14;424(5):391-9
pubmed: 23041298
Ann Clin Lab Sci. 2012 Spring;42(2):165-73
pubmed: 22585613
NPJ Precis Oncol. 2018 Mar 22;2:10
pubmed: 29872719
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Anal Biochem. 2000 Feb 15;278(2):123-31
pubmed: 10660453
Sci Rep. 2019 Dec 27;9(1):19885
pubmed: 31882622
Proteomics. 2009 Dec;9(24):5562-6
pubmed: 19834915
Anal Chem. 2002 Nov 1;74(21):5681-7
pubmed: 12433105
Anal Chem. 2009 Jun 1;81(11):4510-6
pubmed: 19419189
Anal Chem. 2002 Dec 15;74(24):6413-7
pubmed: 12510768