The role of pituitary adenylyl cyclase activating polypeptide in affective signs of nicotine withdrawal.


Journal

Journal of neuroscience research
ISSN: 1097-4547
Titre abrégé: J Neurosci Res
Pays: United States
ID NLM: 7600111

Informations de publication

Date de publication:
08 2020
Historique:
received: 13 12 2019
revised: 17 04 2020
accepted: 04 05 2020
pubmed: 2 6 2020
medline: 24 8 2021
entrez: 2 6 2020
Statut: ppublish

Résumé

Recent evidence implicates endogenous pituitary adenylyl cyclase activating polypeptide (PACAP) in the aversive effect of nicotine. In the present study, we assessed if nicotine-induced conditioned place preference (CPP) or affective signs of nicotine withdrawal would be altered in the absence of PACAP and if there were any sex-related differences in these responses. Male and female mice lacking PACAP and their wild-type controls were tested for baseline place preference on day 1, received conditioning with saline or nicotine (1 mg/kg) on alternate days for 6 days and were then tested for CPP the next day. Mice were then exposed to four additional conditioning and were tested again for nicotine-induced CPP 24 hr later. Controls were conditioned with saline in both chambers and tested similarly. All mice were then, 96 hr later, challenged with mecamylamine (3 mg/kg), and tested for anxiety-like behaviors 30 min later. Mice were then, 2 hr later, forced to swim for 15 min and then tested for depression-like behaviors 24 hr later. Our results showed that male but not female mice lacking PACAP expressed a significant CPP that was comparable to their wild-type controls. In contrast, male but not female mice lacking PACAP exhibited reduced anxiety- and depression-like behaviors compared to their wild-type controls following the mecamylamine challenge. These results suggest that endogenous PACAP is involved in affective signs of nicotine withdrawal, but there is a sex-related difference in this response.

Identifiants

pubmed: 32476165
doi: 10.1002/jnr.24649
doi:

Substances chimiques

Pituitary Adenylate Cyclase-Activating Polypeptide 0
Mecamylamine 6EE945D3OK
Nicotine 6M3C89ZY6R

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1549-1560

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

Agarwal, A., Halvorson, L. M., & Legradi, G. (2005). Pituitary adenylate cyclase-activating polypeptide (PACAP) mimics neuroendocrine and behavioral manifestations of stress: Evidence for PKA-mediated expression of the corticotropin-releasing hormone (CRH) gene. Brain Research. Molecular Brain Research, 138(1), 45-57. https://doi.org/10.1016/j.molbrainres.2005.03.016
Ago, Y., Hiramatsu, N., Ishihama, T., Hazama, K., Hayata-Takano, A., Shibasaki, Y., … Matsuda, T. (2013). The selective metabotropic glutamate 2/3 receptor agonist MGS0028 reverses psychomotor abnormalities and recognition memory deficits in mice lacking the pituitary adenylate cyclase-activating polypeptide. Behavioural Pharmacology, 24(1), 74-77. https://doi.org/10.1097/FBP.0b013e32835cf3e5
Antolin-Fontes, B., Ables, J. L., Gorlich, A., & Ibanez-Tallon, I. (2015). The habenulo-interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology, 96(Pt B), 213-222. https://doi.org/10.1016/j.neuropharm.2014.11.019
Apostolakis, E. M., Riherd, D. N., & O'Malley, B. W. (2005). PAC1 receptors mediate pituitary adenylate cyclase-activating polypeptide- and progesterone-facilitated receptivity in female rats. Molecular Endocrinology, 19(11), 2798-2811. https://doi.org/10.1210/me.2004-0387
Bagosi, Z., Palotai, M., Simon, B., Bokor, P., Buzás, A., Balangó, B., … Szabó, G. (2016). Selective CRF2 receptor agonists ameliorate the anxiety- and depression-like state developed during chronic nicotine treatment and consequent acute withdrawal in mice. Brain Research, 1652, 21-29. https://doi.org/10.1016/j.brainres.2016.09.044
Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl), 153(1), 31-43. https://doi.org/10.1007/s002130000569
Can, A., Blackwell, R. A., Piantadosi, S. C., Dao, D. T., O'Donnell, K. C., & Gould, T. D. (2011). Antidepressant-like responses to lithium in genetically diverse mouse strains. Genes, Brain, and Behavior, 10(4), 434-443. https://doi.org/10.1111/j.1601-183X.2011.00682.x
Can, A., Grahame, N. J., & Gould, T. D. (2012). Affect-related behaviors in mice selectively bred for high and low voluntary alcohol consumption. Behavior Genetics, 42(2), 313-322. https://doi.org/10.1007/s10519-011-9505-y
Carmody, T. P., Brischetto, C. S., Matarazzo, J. D., O'Donnell, R. P., & Connor, W. E. (1985). Co-occurrent use of cigarettes, alcohol, and coffee in healthy, community-living men and women. Health Psychology, 4(4), 323-335. https://doi.org/10.1037/0278-6133.4.4.323
Casarrubea, M., Davies, C., Faulisi, F., Pierucci, M., Colangeli, R., Partridge, L., … Di Giovanni, G. (2015). Acute nicotine induces anxiety and disrupts temporal pattern organization of rat exploratory behavior in hole-board: A potential role for the lateral habenula. Frontiers in Cellular Neuroscience, 9, 197. https://doi.org/10.3389/fncel.2015.00197
Colwell, C. S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Lelièvre, V., … Waschek, J. A. (2004). Selective deficits in the circadian light response in mice lacking PACAP. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 287(5), R1194-R1201. https://doi.org/10.1152/ajpregu.00268.2004
Commons, K. G., Cholanians, A. B., Babb, J. A., & Ehlinger, D. G. (2017). The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chemical Neuroscience, 8(5), 955-960. https://doi.org/10.1021/acschemneuro.7b00042
Damaj, M. I., Kao, W., & Martin, B. R. (2003). Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. Journal of Pharmacology and Experimental Therapeutics, 307(2), 526-534. https://doi.org/10.1124/jpet.103.054908
David, D. J., Renard, C. E., Jolliet, P., Hascoet, M., & Bourin, M. (2003). Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl), 166(4), 373-382. https://doi.org/10.1007/s00213-002-1335-4
DiFranza, J. R., & Guerrera, M. P. (1990). Alcoholism and smoking. Journal of Studies on Alcohol, 51(2), 130-135. https://doi.org/10.15288/jsa.1990.51.130
Doherty, K., Kinnunen, T., Militello, F. S., & Garvey, A. J. (1995). Urges to smoke during the first month of abstinence: Relationship to relapse and predictors. Psychopharmacology (Berl), 119(2), 171-178. https://doi.org/10.1007/BF02246158
Eggan, B. L., & McCallum, S. E. (2016). 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine. Behavioral Brain Research, 307, 186-193. https://doi.org/10.1016/j.bbr.2016.04.008
Elhassan, S., Bagdas, D., & Damaj, M. I. (2017). Effects of nicotine metabolites on nicotine withdrawal behaviors in mice. Nicotine & Tobacco Research, 19(6), 763-766. https://doi.org/10.1093/ntr/ntx045
Farkas, J., Kovács, L. Á., Gáspár, L., Nafz, A., Gaszner, T., Ujvári, B., … Gaszner, B. (2017). Construct and face validity of a new model for the three-hit theory of depression using PACAP mutant mice on CD1 background. Neuroscience, 354, 11-29. https://doi.org/10.1016/j.neuroscience.2017.04.019
Fiore, M. C., Schroeder, S. A., & Baker, T. B. (2014). Smoke, the chief killer-Strategies for targeting combustible tobacco use. New England Journal of Medicine, 370(4), 297-299. https://doi.org/10.1056/NEJMp1314942
Fowler, C. D., & Kenny, P. J. (2014). Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability. Neuropharmacology, 76 Pt B, 533-544. https://doi.org/10.1016/j.neuropharm.2013.09.008
Frahm, S., Antolin-Fontes, B., Gorlich, A., Zander, J. F., Ahnert-Hilger, G., & Ibanez-Tallon, I. (2015). An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence. Elife, 4, e11396. https://doi.org/10.7554/eLife.11396
Frahm, S., Slimak, M. A., Ferrarese, L., Santos-Torres, J., Antolin-Fontes, B., Auer, S., … Ibanez-Tallon, I. (2011). Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron, 70(3), 522-535. https://doi.org/10.1016/j.neuron.2011.04.013
Gaszner, B., Kormos, V., Kozicz, T., Hashimoto, H., Reglodi, D., & Helyes, Z. (2012). The behavioral phenotype of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus. Neuroscience, 202, 283-299. https://doi.org/10.1016/j.neuroscience.2011.11.046
George, O., Ghozland, S., Azar, M. R., Cottone, P., Zorrilla, E. P., Parsons, L. H., … Koob, G. F. (2007). CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 17198-17203. https://doi.org/10.1073/pnas.0707585104
Ghatei, M. A., Takahashi, K., Suzuki, Y., Gardiner, J., Jones, P. M., & Bloom, S. R. (1993). Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. Journal of Endocrinology, 136(1), 159-166. https://doi.org/10.1677/joe.0.1360159
Gorlich, A., Antolin-Fontes, B., Ables, J. L., Frahm, S., Slimak, M. A., Dougherty, J. D., & Ibanez-Tallon, I. (2013). Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 17077-17082. https://doi.org/10.1073/pnas.1313103110
Grieder, T. E., Herman, M. A., Contet, C., Tan, L. A., Vargas-Perez, H., Cohen, A., … George, O. (2014). VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation. Nature Neuroscience, 17(12), 1751-1758. https://doi.org/10.1038/nn.3872
Grinevich, V., Fournier, A., & Pelletier, G. (1997). Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on corticotropin-releasing hormone (CRH) gene expression in the rat hypothalamic paraventricular nucleus. Brain Research, 773(1-2), 190-196. https://doi.org/10.1016/S0006-8993(97)01011-1
Hammack, S. E., Roman, C. W., Lezak, K. R., Kocho-Shellenberg, M., Grimmig, B., Falls, W. A., … May, V. (2010). Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress. Journal of Molecular Neuroscience, 42(3), 327-340. https://doi.org/10.1007/s12031-010-9364-7
Hamouda, A. K., Jackson, A., Bagdas, D., & Imad Damaj, M. (2018). Reversal of nicotine withdrawal signs through positive allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors in male mice. Nicotine & Tobacco Research, 20(7), 903-907. https://doi.org/10.1093/ntr/ntx183
Hashimoto, H., Hashimoto, R., Shintani, N., Tanaka, K., Yamamoto, A., Hatanaka, M., … Baba, A. (2009). Depression-like behavior in the forced swimming test in PACAP-deficient mice: Amelioration by the atypical antipsychotic risperidone. Journal of Neurochemistry, 110(2), 595-602. https://doi.org/10.1111/j.1471-4159.2009.06168.x
Hashimoto, H., Shintani, N., Tanaka, K., Mori, W., Hirose, M., Matsuda, T., … Baba, A. (2001). Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13355-13360. https://doi.org/10.1073/pnas.231094498
Hashimoto, R., Hashimoto, H., Shintani, N., Ohi, K., Hori, H., Saitoh, O., … Kunugi, H. (2010). Possible association between the pituitary adenylate cyclase-activating polypeptide (PACAP) gene and major depressive disorder. Neuroscience Letters, 468(3), 300-302. https://doi.org/10.1016/j.neulet.2009.11.019
Hattori, S., Takao, K., Tanda, K., Toyama, K., Shintani, N., Baba, A., … Miyakawa, T. (2012). Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Frontiers in Behavioural Neurosciences, 6, 58. https://doi.org/10.3389/fnbeh.2012.00058
Hines, M., Davis, F. C., Coquelin, A., Goy, R. W., & Gorski, R. A. (1985). Sexually dimorphic regions in the medial preoptic area and the bed nucleus of the stria terminalis of the guinea pig brain: A description and an investigation of their relationship to gonadal steroids in adulthood. Journal of Neuroscience, 5(1), 40-47. https://doi.org/10.1523/JNEUROSCI.05-01-00040.1985
Hughes, J. R., & Hatsukami, D. (1986). Signs and symptoms of tobacco withdrawal. Archives of General Psychiatry, 43(3), 289-294. https://doi.org/10.1001/archpsyc.1986.01800030107013
Hughes, J. R., Hatsukami, D. K., Mitchell, J. E., & Dahlgren, L. A. (1986). Prevalence of smoking among psychiatric outpatients. American Journal of Psychiatry, 143(8), 993-997. https://doi.org/10.1176/ajp.143.8.993
Hunt, W. A., Barnett, L. W., & Branch, L. G. (1971). Relapse rates in addiction programs. Journal of Clinical Psychology, 27(4), 455-456. https://doi.org/10.1002/1097-4679(197110)27:4<455:AID-JCLP2270270412>3.0.CO;2-R
Isola, R., Vogelsberg, V., Wemlinger, T. A., Neff, N. H., & Hadjiconstantinou, M. (1999). Nicotine abstinence in the mouse. Brain Research, 850(1-2), 189-196. https://doi.org/10.1016/S0006-8993(99)02131-9
Jackson, A., Papke, R. L., & Damaj, M. I. (2018). Pharmacological modulation of the alpha7 nicotinic acetylcholine receptor in a mouse model of mecamylamine-precipitated nicotine withdrawal. Psychopharmacology (Berl), 235(7), 1897-1905. https://doi.org/10.1007/s00213-018-4879-7
Jackson, K. J., McIntosh, J. M., Brunzell, D. H., Sanjakdar, S. S., & Damaj, M. I. (2009). The role of alpha6-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal. Journal of Pharmacology and Experimental Therapeutics, 331(2), 547-554. https://doi.org/10.1124/jpet.109.155457
Jackson, K. J., Muldoon, P. P., De Biasi, M., & Damaj, M. I. (2015). New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology, 96(Pt B), 223-234. https://doi.org/10.1016/j.neuropharm.2014.11.009
Kenny, P. J., & Markou, A. (2001). Neurobiology of the nicotine withdrawal syndrome. Pharmacology, Biochemistry and Behavior, 70(4), 531-549. https://doi.org/10.1016/S0091-3057(01)00651-7
King, S. B., Toufexis, D. J., & Hammack, S. E. (2017). Pituitary adenylate cyclase activating polypeptide (PACAP), stress, and sex hormones. Stress, 20(5), 465-475. https://doi.org/10.1080/10253890.2017.1336535
Kormos, V., Gáspár, L., Kovács, L. Á., Farkas, J., Gaszner, T., Csernus, V., … Gaszner, B. (2016). Reduced response to chronic mild stress in PACAP mutant mice is associated with blunted FosB expression in limbic forebrain and brainstem centers. Neuroscience, 330, 335-358. https://doi.org/10.1016/j.neuroscience.2016.06.004
Lee, H., Kang, M. S., Chung, J. M., & Noh, J. (2015). Repeated nicotine exposure in adolescent rats: Reduction of medial habenular activity and augmentation of nicotine preference. Physiology & Behavior, 138, 345-350. https://doi.org/10.1016/j.physbeh.2014.11.034
Lehmann, M. L., Mustafa, T., Eiden, A. M., Herkenham, M., & Eiden, L. E. (2013). PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology, 38(5), 702-715. https://doi.org/10.1016/j.psyneuen.2012.09.006
Lister, R. G. (1990). Ethologically-based animal models of anxiety disorders. Pharmacology & Therapeutics, 46(3), 321-340. https://doi.org/10.1016/0163-7258(90)90021-S
Lutfy, K., & Shankar, G. (2019). Emerging evidence for the role of pituitary adenylate cyclase-activating peptide in neuropsychiatric disorders. Progress in Molecular Biology and Translational Science, 167, 143-157. https://doi.org/10.1016/bs.pmbts.2019.06.009
Machaalani, R., Thawley, M., Huang, J., & Chen, H. (2019). Effects of prenatal cigarette smoke exposure on BDNF, PACAP, microglia and gliosis expression in the young male mouse brainstem. Neurotoxicology, 74, 40-46. https://doi.org/10.1016/j.neuro.2019.05.009
Mackowick, K. M., Heishman, S. J., Wehring, H. J., Liu, F., McMahon, R. P., & Kelly, D. L. (2012). Illicit drug use in heavy smokers with and without schizophrenia. Schizophrenia Research, 139(1-3), 194-200. https://doi.org/10.1016/j.schres.2012.04.012
Mackowick, K. M., Lynch, M. J., Weinberger, A. H., & George, T. P. (2012). Treatment of tobacco dependence in people with mental health and addictive disorders. Current Psychiatry Reports, 14(5), 478-485. https://doi.org/10.1007/s11920-012-0299-2
Manavalan, S., Getachew, B., Manaye, K. F., Khundmiri, S. J., Csoka, A. B., McKinley, R., … Tizabi, Y. (2017). PACAP protects against ethanol and nicotine toxicity in SH-SY5Y cells: Implications for drinking-smoking co-morbidity. Neurotoxicity Research, 32(1), 8-13. https://doi.org/10.1007/s12640-017-9727-8
Masuo, Y., Ohtaki, T., Masuda, Y., Nagai, Y., Suno, M., Tsuda, M., & Fujino, M. (1991). Autoradiographic distribution of pituitary adenylate cyclase activating polypeptide (PACAP) binding sites in the rat brain. Neuroscience Letters, 126(2), 103-106. https://doi.org/10.1016/0304-3940(91)90529-3
Miller, N. S., & Gold, M. S. (1998). Comorbid cigarette and alcohol addiction: Epidemiology and treatment. Journal of Addictive Diseases, 17(1), 55-66. https://doi.org/10.1300/J069v17n01_06
Miyata, A., Arimura, A., Dahl, R. R., Minamino, N., Uehara, A., Jiang, L., … Coy, D. H. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 164(1), 567-574. https://doi.org/10.1016/0006-291X(89)91757-9
O'Dell, L. E., & Torres, O. V. (2014). A mechanistic hypothesis of the factors that enhance vulnerability to nicotine use in females. Neuropharmacology, 76 Pt B, 566-580. https://doi.org/10.1016/j.neuropharm.2013.04.055
Oslin, D., Liberto, J. G., O'Brien, J., Krois, S., & Norbeck, J. (1997). Naltrexone as an adjunctive treatment for older patients with alcohol dependence. American Journal of Geriatric Psychiatry, 5(4), 324-332. https://doi.org/10.1097/00019442-199700540-00007
Otto, C., Martin, M., Wolfer, D. P., Lipp, H. P., Maldonado, R., & Schutz, G. (2001). Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Research. Molecular Brain Research, 92(1-2), 78-84. https://doi.org/10.1016/s0169-328x(01)00153-x
Petit-Demouliere, B., Chenu, F., & Bourin, M. (2005). Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology (Berl), 177(3), 245-255. https://doi.org/10.1007/s00213-004-2048-7
Picciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. NeuroReport, 13(9), 1097-1106. https://doi.org/10.1097/00001756-200207020-00006
Picciotto, M. R., & Zoli, M. (2002). Nicotinic receptors in aging and dementia. Journal of Neurobiology, 53(4), 641-655. https://doi.org/10.1002/neu.10102
Porsolt, R. D. (1979). Animal model of depression. Biomedicine, 30(3), 139-140.
Porsolt, R. D., Bertin, A., & Jalfre, M. (1977). Behavioral despair in mice: A primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Therapie, 229(2), 327-336.
Reglodi, D., Kiss, P., Horvath, G., Lubics, A., Laszlo, E., Tamas, A., … Szakaly, P. (2012). Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney. Neuropeptides, 46(2), 61-70. https://doi.org/10.1016/j.npep.2011.05.001
Reglodi, D., Kiss, P., Szabadfi, K., Atlasz, T., Gabriel, R., Horvath, G., … Tamas, A. (2012). PACAP is an endogenous protective factor-insights from PACAP-deficient mice. Journal of Molecular Neuroscience, 48(3), 482-492. https://doi.org/10.1007/s12031-012-9762-0
Reglodi, D., Tamas, A., Koppan, M., Szogyi, D., & Welke, L. (2012). Role of PACAP in female fertility and reproduction at gonadal level-Recent advances. Frontiers in Endocrinology, 3, 155. https://doi.org/10.3389/fendo.2012.00155
Rimm, E. B., Chan, J., Stampfer, M. J., Colditz, G. A., & Willett, W. C. (1995). Prospective study of cigarette smoking, alcohol use, and the risk of diabetes in men. BMJ, 310(6979), 555-559.
Semba, J., Wakuta, M., Maeda, J., & Suhara, T. (2004). Nicotine withdrawal induces subsensitivity of hypothalamic-pituitary-adrenal axis to stress in rats: Implications for precipitation of depression during smoking cessation. Psychoneuroendocrinology, 29(2), 215-226. https://doi.org/10.1016/S0306-4530(03)00024-6
Slimak, M. A., Ables, J. L., Frahm, S., Antolin-Fontes, B., Santos-Torres, J., Moretti, M., … Ibanez-Tallon, I. (2014). Habenular expression of rare missense variants of the beta4 nicotinic receptor subunit alters nicotine consumption. Frontiers in Human Neuroscience, 8, 12. https://doi.org/10.3389/fnhum.2014.00012
Stroth, N., & Eiden, L. E. (2010). Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience, 165(4), 1025-1030. https://doi.org/10.1016/j.neuroscience.2009.11.023
Stroth, N., Holighaus, Y., Ait-Ali, D., & Eiden, L. E. (2011). PACAP: A master regulator of neuroendocrine stress circuits and the cellular stress response. Annals of the New York Academy of Sciences, 1220, 49-59. https://doi.org/10.1111/j.1749-6632.2011.05904.x
Stroth, N., Liu, Y., Aguilera, G., & Eiden, L. E. (2011). Pituitary adenylate cyclase-activating polypeptide controls stimulus-transcription coupling in the hypothalamic-pituitary-adrenal axis to mediate sustained hormone secretion during stress. Journal of Neuroendocrinology, 23(10), 944-955. https://doi.org/10.1111/j.1365-2826.2011.02202.x
Tseng, A., Singh, P., Marquez, P., Hamid, A., & Lutfy, K. (2019). The role of endogenous pituitary adenylyl cyclase activating polypeptide (PACAP) in nicotine self-administration, reward and aversion. Pharmacology, Biochemistry and Behavior, 181, 46-52. https://doi.org/10.1016/j.pbb.2019.04.007
Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., … Vaudry, H. (2009). Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacological Reviews, 61(3), 283-357. https://doi.org/10.1124/pr.109.001370
Vereczki, V., Koves, K., Csaki, A., Grosz, K., Hoffman, G. E., & Fiskum, G. (2006). Distribution of hypothalamic, hippocampal and other limbic peptidergic neuronal cell bodies giving rise to retinopetal fibers: Anterograde and retrograde tracing and neuropeptide immunohistochemical studies. Neuroscience, 140(3), 1089-1100. https://doi.org/10.1016/j.neuroscience.2006.02.081
Yu, G., & Sharp, B. M. (2012). Nicotine modulates multiple regions in the limbic stress network regulating activation of hypophysiotrophic neurons in hypothalamic paraventricular nucleus. Journal of Neurochemistry, 122(3), 628-640. https://doi.org/10.1111/j.1471-4159.2012.07785.x
Zuo, W., Xiao, C., Gao, M., Hopf, F. W., Krnjević, K., McIntosh, J. M., … Ye, J.-H. (2016). Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms. Scientific Reports, 6, 32937. https://doi.org/10.1038/srep32937

Auteurs

Shiromani Nega (S)

Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA.

Paul Marquez (P)

Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA.

Abdul Hamid (A)

Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA.

Syed Muzzammil Ahmad (SM)

Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA.

Kabirullah Lutfy (K)

Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH