The role of pituitary adenylyl cyclase activating polypeptide in affective signs of nicotine withdrawal.
Animals
Anxiety
Conditioning, Psychological
/ physiology
Depression
Female
Male
Mecamylamine
/ pharmacology
Mice
Mice, Inbred C57BL
Mice, Knockout
Nicotine
/ pharmacology
Pituitary Adenylate Cyclase-Activating Polypeptide
/ deficiency
Sex Factors
Substance Withdrawal Syndrome
/ genetics
Tobacco Use Disorder
/ psychology
PACAP knockout mouse
anxiety-like behaviors
conditioned place preference (CPP)
depression-like behaviors
nicotine
withdrawal
Journal
Journal of neuroscience research
ISSN: 1097-4547
Titre abrégé: J Neurosci Res
Pays: United States
ID NLM: 7600111
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
13
12
2019
revised:
17
04
2020
accepted:
04
05
2020
pubmed:
2
6
2020
medline:
24
8
2021
entrez:
2
6
2020
Statut:
ppublish
Résumé
Recent evidence implicates endogenous pituitary adenylyl cyclase activating polypeptide (PACAP) in the aversive effect of nicotine. In the present study, we assessed if nicotine-induced conditioned place preference (CPP) or affective signs of nicotine withdrawal would be altered in the absence of PACAP and if there were any sex-related differences in these responses. Male and female mice lacking PACAP and their wild-type controls were tested for baseline place preference on day 1, received conditioning with saline or nicotine (1 mg/kg) on alternate days for 6 days and were then tested for CPP the next day. Mice were then exposed to four additional conditioning and were tested again for nicotine-induced CPP 24 hr later. Controls were conditioned with saline in both chambers and tested similarly. All mice were then, 96 hr later, challenged with mecamylamine (3 mg/kg), and tested for anxiety-like behaviors 30 min later. Mice were then, 2 hr later, forced to swim for 15 min and then tested for depression-like behaviors 24 hr later. Our results showed that male but not female mice lacking PACAP expressed a significant CPP that was comparable to their wild-type controls. In contrast, male but not female mice lacking PACAP exhibited reduced anxiety- and depression-like behaviors compared to their wild-type controls following the mecamylamine challenge. These results suggest that endogenous PACAP is involved in affective signs of nicotine withdrawal, but there is a sex-related difference in this response.
Substances chimiques
Pituitary Adenylate Cyclase-Activating Polypeptide
0
Mecamylamine
6EE945D3OK
Nicotine
6M3C89ZY6R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1549-1560Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Agarwal, A., Halvorson, L. M., & Legradi, G. (2005). Pituitary adenylate cyclase-activating polypeptide (PACAP) mimics neuroendocrine and behavioral manifestations of stress: Evidence for PKA-mediated expression of the corticotropin-releasing hormone (CRH) gene. Brain Research. Molecular Brain Research, 138(1), 45-57. https://doi.org/10.1016/j.molbrainres.2005.03.016
Ago, Y., Hiramatsu, N., Ishihama, T., Hazama, K., Hayata-Takano, A., Shibasaki, Y., … Matsuda, T. (2013). The selective metabotropic glutamate 2/3 receptor agonist MGS0028 reverses psychomotor abnormalities and recognition memory deficits in mice lacking the pituitary adenylate cyclase-activating polypeptide. Behavioural Pharmacology, 24(1), 74-77. https://doi.org/10.1097/FBP.0b013e32835cf3e5
Antolin-Fontes, B., Ables, J. L., Gorlich, A., & Ibanez-Tallon, I. (2015). The habenulo-interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology, 96(Pt B), 213-222. https://doi.org/10.1016/j.neuropharm.2014.11.019
Apostolakis, E. M., Riherd, D. N., & O'Malley, B. W. (2005). PAC1 receptors mediate pituitary adenylate cyclase-activating polypeptide- and progesterone-facilitated receptivity in female rats. Molecular Endocrinology, 19(11), 2798-2811. https://doi.org/10.1210/me.2004-0387
Bagosi, Z., Palotai, M., Simon, B., Bokor, P., Buzás, A., Balangó, B., … Szabó, G. (2016). Selective CRF2 receptor agonists ameliorate the anxiety- and depression-like state developed during chronic nicotine treatment and consequent acute withdrawal in mice. Brain Research, 1652, 21-29. https://doi.org/10.1016/j.brainres.2016.09.044
Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl), 153(1), 31-43. https://doi.org/10.1007/s002130000569
Can, A., Blackwell, R. A., Piantadosi, S. C., Dao, D. T., O'Donnell, K. C., & Gould, T. D. (2011). Antidepressant-like responses to lithium in genetically diverse mouse strains. Genes, Brain, and Behavior, 10(4), 434-443. https://doi.org/10.1111/j.1601-183X.2011.00682.x
Can, A., Grahame, N. J., & Gould, T. D. (2012). Affect-related behaviors in mice selectively bred for high and low voluntary alcohol consumption. Behavior Genetics, 42(2), 313-322. https://doi.org/10.1007/s10519-011-9505-y
Carmody, T. P., Brischetto, C. S., Matarazzo, J. D., O'Donnell, R. P., & Connor, W. E. (1985). Co-occurrent use of cigarettes, alcohol, and coffee in healthy, community-living men and women. Health Psychology, 4(4), 323-335. https://doi.org/10.1037/0278-6133.4.4.323
Casarrubea, M., Davies, C., Faulisi, F., Pierucci, M., Colangeli, R., Partridge, L., … Di Giovanni, G. (2015). Acute nicotine induces anxiety and disrupts temporal pattern organization of rat exploratory behavior in hole-board: A potential role for the lateral habenula. Frontiers in Cellular Neuroscience, 9, 197. https://doi.org/10.3389/fncel.2015.00197
Colwell, C. S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Lelièvre, V., … Waschek, J. A. (2004). Selective deficits in the circadian light response in mice lacking PACAP. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 287(5), R1194-R1201. https://doi.org/10.1152/ajpregu.00268.2004
Commons, K. G., Cholanians, A. B., Babb, J. A., & Ehlinger, D. G. (2017). The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chemical Neuroscience, 8(5), 955-960. https://doi.org/10.1021/acschemneuro.7b00042
Damaj, M. I., Kao, W., & Martin, B. R. (2003). Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. Journal of Pharmacology and Experimental Therapeutics, 307(2), 526-534. https://doi.org/10.1124/jpet.103.054908
David, D. J., Renard, C. E., Jolliet, P., Hascoet, M., & Bourin, M. (2003). Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl), 166(4), 373-382. https://doi.org/10.1007/s00213-002-1335-4
DiFranza, J. R., & Guerrera, M. P. (1990). Alcoholism and smoking. Journal of Studies on Alcohol, 51(2), 130-135. https://doi.org/10.15288/jsa.1990.51.130
Doherty, K., Kinnunen, T., Militello, F. S., & Garvey, A. J. (1995). Urges to smoke during the first month of abstinence: Relationship to relapse and predictors. Psychopharmacology (Berl), 119(2), 171-178. https://doi.org/10.1007/BF02246158
Eggan, B. L., & McCallum, S. E. (2016). 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine. Behavioral Brain Research, 307, 186-193. https://doi.org/10.1016/j.bbr.2016.04.008
Elhassan, S., Bagdas, D., & Damaj, M. I. (2017). Effects of nicotine metabolites on nicotine withdrawal behaviors in mice. Nicotine & Tobacco Research, 19(6), 763-766. https://doi.org/10.1093/ntr/ntx045
Farkas, J., Kovács, L. Á., Gáspár, L., Nafz, A., Gaszner, T., Ujvári, B., … Gaszner, B. (2017). Construct and face validity of a new model for the three-hit theory of depression using PACAP mutant mice on CD1 background. Neuroscience, 354, 11-29. https://doi.org/10.1016/j.neuroscience.2017.04.019
Fiore, M. C., Schroeder, S. A., & Baker, T. B. (2014). Smoke, the chief killer-Strategies for targeting combustible tobacco use. New England Journal of Medicine, 370(4), 297-299. https://doi.org/10.1056/NEJMp1314942
Fowler, C. D., & Kenny, P. J. (2014). Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability. Neuropharmacology, 76 Pt B, 533-544. https://doi.org/10.1016/j.neuropharm.2013.09.008
Frahm, S., Antolin-Fontes, B., Gorlich, A., Zander, J. F., Ahnert-Hilger, G., & Ibanez-Tallon, I. (2015). An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence. Elife, 4, e11396. https://doi.org/10.7554/eLife.11396
Frahm, S., Slimak, M. A., Ferrarese, L., Santos-Torres, J., Antolin-Fontes, B., Auer, S., … Ibanez-Tallon, I. (2011). Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron, 70(3), 522-535. https://doi.org/10.1016/j.neuron.2011.04.013
Gaszner, B., Kormos, V., Kozicz, T., Hashimoto, H., Reglodi, D., & Helyes, Z. (2012). The behavioral phenotype of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus. Neuroscience, 202, 283-299. https://doi.org/10.1016/j.neuroscience.2011.11.046
George, O., Ghozland, S., Azar, M. R., Cottone, P., Zorrilla, E. P., Parsons, L. H., … Koob, G. F. (2007). CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 17198-17203. https://doi.org/10.1073/pnas.0707585104
Ghatei, M. A., Takahashi, K., Suzuki, Y., Gardiner, J., Jones, P. M., & Bloom, S. R. (1993). Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. Journal of Endocrinology, 136(1), 159-166. https://doi.org/10.1677/joe.0.1360159
Gorlich, A., Antolin-Fontes, B., Ables, J. L., Frahm, S., Slimak, M. A., Dougherty, J. D., & Ibanez-Tallon, I. (2013). Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 17077-17082. https://doi.org/10.1073/pnas.1313103110
Grieder, T. E., Herman, M. A., Contet, C., Tan, L. A., Vargas-Perez, H., Cohen, A., … George, O. (2014). VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation. Nature Neuroscience, 17(12), 1751-1758. https://doi.org/10.1038/nn.3872
Grinevich, V., Fournier, A., & Pelletier, G. (1997). Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on corticotropin-releasing hormone (CRH) gene expression in the rat hypothalamic paraventricular nucleus. Brain Research, 773(1-2), 190-196. https://doi.org/10.1016/S0006-8993(97)01011-1
Hammack, S. E., Roman, C. W., Lezak, K. R., Kocho-Shellenberg, M., Grimmig, B., Falls, W. A., … May, V. (2010). Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress. Journal of Molecular Neuroscience, 42(3), 327-340. https://doi.org/10.1007/s12031-010-9364-7
Hamouda, A. K., Jackson, A., Bagdas, D., & Imad Damaj, M. (2018). Reversal of nicotine withdrawal signs through positive allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors in male mice. Nicotine & Tobacco Research, 20(7), 903-907. https://doi.org/10.1093/ntr/ntx183
Hashimoto, H., Hashimoto, R., Shintani, N., Tanaka, K., Yamamoto, A., Hatanaka, M., … Baba, A. (2009). Depression-like behavior in the forced swimming test in PACAP-deficient mice: Amelioration by the atypical antipsychotic risperidone. Journal of Neurochemistry, 110(2), 595-602. https://doi.org/10.1111/j.1471-4159.2009.06168.x
Hashimoto, H., Shintani, N., Tanaka, K., Mori, W., Hirose, M., Matsuda, T., … Baba, A. (2001). Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13355-13360. https://doi.org/10.1073/pnas.231094498
Hashimoto, R., Hashimoto, H., Shintani, N., Ohi, K., Hori, H., Saitoh, O., … Kunugi, H. (2010). Possible association between the pituitary adenylate cyclase-activating polypeptide (PACAP) gene and major depressive disorder. Neuroscience Letters, 468(3), 300-302. https://doi.org/10.1016/j.neulet.2009.11.019
Hattori, S., Takao, K., Tanda, K., Toyama, K., Shintani, N., Baba, A., … Miyakawa, T. (2012). Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Frontiers in Behavioural Neurosciences, 6, 58. https://doi.org/10.3389/fnbeh.2012.00058
Hines, M., Davis, F. C., Coquelin, A., Goy, R. W., & Gorski, R. A. (1985). Sexually dimorphic regions in the medial preoptic area and the bed nucleus of the stria terminalis of the guinea pig brain: A description and an investigation of their relationship to gonadal steroids in adulthood. Journal of Neuroscience, 5(1), 40-47. https://doi.org/10.1523/JNEUROSCI.05-01-00040.1985
Hughes, J. R., & Hatsukami, D. (1986). Signs and symptoms of tobacco withdrawal. Archives of General Psychiatry, 43(3), 289-294. https://doi.org/10.1001/archpsyc.1986.01800030107013
Hughes, J. R., Hatsukami, D. K., Mitchell, J. E., & Dahlgren, L. A. (1986). Prevalence of smoking among psychiatric outpatients. American Journal of Psychiatry, 143(8), 993-997. https://doi.org/10.1176/ajp.143.8.993
Hunt, W. A., Barnett, L. W., & Branch, L. G. (1971). Relapse rates in addiction programs. Journal of Clinical Psychology, 27(4), 455-456. https://doi.org/10.1002/1097-4679(197110)27:4<455:AID-JCLP2270270412>3.0.CO;2-R
Isola, R., Vogelsberg, V., Wemlinger, T. A., Neff, N. H., & Hadjiconstantinou, M. (1999). Nicotine abstinence in the mouse. Brain Research, 850(1-2), 189-196. https://doi.org/10.1016/S0006-8993(99)02131-9
Jackson, A., Papke, R. L., & Damaj, M. I. (2018). Pharmacological modulation of the alpha7 nicotinic acetylcholine receptor in a mouse model of mecamylamine-precipitated nicotine withdrawal. Psychopharmacology (Berl), 235(7), 1897-1905. https://doi.org/10.1007/s00213-018-4879-7
Jackson, K. J., McIntosh, J. M., Brunzell, D. H., Sanjakdar, S. S., & Damaj, M. I. (2009). The role of alpha6-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal. Journal of Pharmacology and Experimental Therapeutics, 331(2), 547-554. https://doi.org/10.1124/jpet.109.155457
Jackson, K. J., Muldoon, P. P., De Biasi, M., & Damaj, M. I. (2015). New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology, 96(Pt B), 223-234. https://doi.org/10.1016/j.neuropharm.2014.11.009
Kenny, P. J., & Markou, A. (2001). Neurobiology of the nicotine withdrawal syndrome. Pharmacology, Biochemistry and Behavior, 70(4), 531-549. https://doi.org/10.1016/S0091-3057(01)00651-7
King, S. B., Toufexis, D. J., & Hammack, S. E. (2017). Pituitary adenylate cyclase activating polypeptide (PACAP), stress, and sex hormones. Stress, 20(5), 465-475. https://doi.org/10.1080/10253890.2017.1336535
Kormos, V., Gáspár, L., Kovács, L. Á., Farkas, J., Gaszner, T., Csernus, V., … Gaszner, B. (2016). Reduced response to chronic mild stress in PACAP mutant mice is associated with blunted FosB expression in limbic forebrain and brainstem centers. Neuroscience, 330, 335-358. https://doi.org/10.1016/j.neuroscience.2016.06.004
Lee, H., Kang, M. S., Chung, J. M., & Noh, J. (2015). Repeated nicotine exposure in adolescent rats: Reduction of medial habenular activity and augmentation of nicotine preference. Physiology & Behavior, 138, 345-350. https://doi.org/10.1016/j.physbeh.2014.11.034
Lehmann, M. L., Mustafa, T., Eiden, A. M., Herkenham, M., & Eiden, L. E. (2013). PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology, 38(5), 702-715. https://doi.org/10.1016/j.psyneuen.2012.09.006
Lister, R. G. (1990). Ethologically-based animal models of anxiety disorders. Pharmacology & Therapeutics, 46(3), 321-340. https://doi.org/10.1016/0163-7258(90)90021-S
Lutfy, K., & Shankar, G. (2019). Emerging evidence for the role of pituitary adenylate cyclase-activating peptide in neuropsychiatric disorders. Progress in Molecular Biology and Translational Science, 167, 143-157. https://doi.org/10.1016/bs.pmbts.2019.06.009
Machaalani, R., Thawley, M., Huang, J., & Chen, H. (2019). Effects of prenatal cigarette smoke exposure on BDNF, PACAP, microglia and gliosis expression in the young male mouse brainstem. Neurotoxicology, 74, 40-46. https://doi.org/10.1016/j.neuro.2019.05.009
Mackowick, K. M., Heishman, S. J., Wehring, H. J., Liu, F., McMahon, R. P., & Kelly, D. L. (2012). Illicit drug use in heavy smokers with and without schizophrenia. Schizophrenia Research, 139(1-3), 194-200. https://doi.org/10.1016/j.schres.2012.04.012
Mackowick, K. M., Lynch, M. J., Weinberger, A. H., & George, T. P. (2012). Treatment of tobacco dependence in people with mental health and addictive disorders. Current Psychiatry Reports, 14(5), 478-485. https://doi.org/10.1007/s11920-012-0299-2
Manavalan, S., Getachew, B., Manaye, K. F., Khundmiri, S. J., Csoka, A. B., McKinley, R., … Tizabi, Y. (2017). PACAP protects against ethanol and nicotine toxicity in SH-SY5Y cells: Implications for drinking-smoking co-morbidity. Neurotoxicity Research, 32(1), 8-13. https://doi.org/10.1007/s12640-017-9727-8
Masuo, Y., Ohtaki, T., Masuda, Y., Nagai, Y., Suno, M., Tsuda, M., & Fujino, M. (1991). Autoradiographic distribution of pituitary adenylate cyclase activating polypeptide (PACAP) binding sites in the rat brain. Neuroscience Letters, 126(2), 103-106. https://doi.org/10.1016/0304-3940(91)90529-3
Miller, N. S., & Gold, M. S. (1998). Comorbid cigarette and alcohol addiction: Epidemiology and treatment. Journal of Addictive Diseases, 17(1), 55-66. https://doi.org/10.1300/J069v17n01_06
Miyata, A., Arimura, A., Dahl, R. R., Minamino, N., Uehara, A., Jiang, L., … Coy, D. H. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 164(1), 567-574. https://doi.org/10.1016/0006-291X(89)91757-9
O'Dell, L. E., & Torres, O. V. (2014). A mechanistic hypothesis of the factors that enhance vulnerability to nicotine use in females. Neuropharmacology, 76 Pt B, 566-580. https://doi.org/10.1016/j.neuropharm.2013.04.055
Oslin, D., Liberto, J. G., O'Brien, J., Krois, S., & Norbeck, J. (1997). Naltrexone as an adjunctive treatment for older patients with alcohol dependence. American Journal of Geriatric Psychiatry, 5(4), 324-332. https://doi.org/10.1097/00019442-199700540-00007
Otto, C., Martin, M., Wolfer, D. P., Lipp, H. P., Maldonado, R., & Schutz, G. (2001). Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Research. Molecular Brain Research, 92(1-2), 78-84. https://doi.org/10.1016/s0169-328x(01)00153-x
Petit-Demouliere, B., Chenu, F., & Bourin, M. (2005). Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology (Berl), 177(3), 245-255. https://doi.org/10.1007/s00213-004-2048-7
Picciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. NeuroReport, 13(9), 1097-1106. https://doi.org/10.1097/00001756-200207020-00006
Picciotto, M. R., & Zoli, M. (2002). Nicotinic receptors in aging and dementia. Journal of Neurobiology, 53(4), 641-655. https://doi.org/10.1002/neu.10102
Porsolt, R. D. (1979). Animal model of depression. Biomedicine, 30(3), 139-140.
Porsolt, R. D., Bertin, A., & Jalfre, M. (1977). Behavioral despair in mice: A primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Therapie, 229(2), 327-336.
Reglodi, D., Kiss, P., Horvath, G., Lubics, A., Laszlo, E., Tamas, A., … Szakaly, P. (2012). Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney. Neuropeptides, 46(2), 61-70. https://doi.org/10.1016/j.npep.2011.05.001
Reglodi, D., Kiss, P., Szabadfi, K., Atlasz, T., Gabriel, R., Horvath, G., … Tamas, A. (2012). PACAP is an endogenous protective factor-insights from PACAP-deficient mice. Journal of Molecular Neuroscience, 48(3), 482-492. https://doi.org/10.1007/s12031-012-9762-0
Reglodi, D., Tamas, A., Koppan, M., Szogyi, D., & Welke, L. (2012). Role of PACAP in female fertility and reproduction at gonadal level-Recent advances. Frontiers in Endocrinology, 3, 155. https://doi.org/10.3389/fendo.2012.00155
Rimm, E. B., Chan, J., Stampfer, M. J., Colditz, G. A., & Willett, W. C. (1995). Prospective study of cigarette smoking, alcohol use, and the risk of diabetes in men. BMJ, 310(6979), 555-559.
Semba, J., Wakuta, M., Maeda, J., & Suhara, T. (2004). Nicotine withdrawal induces subsensitivity of hypothalamic-pituitary-adrenal axis to stress in rats: Implications for precipitation of depression during smoking cessation. Psychoneuroendocrinology, 29(2), 215-226. https://doi.org/10.1016/S0306-4530(03)00024-6
Slimak, M. A., Ables, J. L., Frahm, S., Antolin-Fontes, B., Santos-Torres, J., Moretti, M., … Ibanez-Tallon, I. (2014). Habenular expression of rare missense variants of the beta4 nicotinic receptor subunit alters nicotine consumption. Frontiers in Human Neuroscience, 8, 12. https://doi.org/10.3389/fnhum.2014.00012
Stroth, N., & Eiden, L. E. (2010). Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience, 165(4), 1025-1030. https://doi.org/10.1016/j.neuroscience.2009.11.023
Stroth, N., Holighaus, Y., Ait-Ali, D., & Eiden, L. E. (2011). PACAP: A master regulator of neuroendocrine stress circuits and the cellular stress response. Annals of the New York Academy of Sciences, 1220, 49-59. https://doi.org/10.1111/j.1749-6632.2011.05904.x
Stroth, N., Liu, Y., Aguilera, G., & Eiden, L. E. (2011). Pituitary adenylate cyclase-activating polypeptide controls stimulus-transcription coupling in the hypothalamic-pituitary-adrenal axis to mediate sustained hormone secretion during stress. Journal of Neuroendocrinology, 23(10), 944-955. https://doi.org/10.1111/j.1365-2826.2011.02202.x
Tseng, A., Singh, P., Marquez, P., Hamid, A., & Lutfy, K. (2019). The role of endogenous pituitary adenylyl cyclase activating polypeptide (PACAP) in nicotine self-administration, reward and aversion. Pharmacology, Biochemistry and Behavior, 181, 46-52. https://doi.org/10.1016/j.pbb.2019.04.007
Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., … Vaudry, H. (2009). Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacological Reviews, 61(3), 283-357. https://doi.org/10.1124/pr.109.001370
Vereczki, V., Koves, K., Csaki, A., Grosz, K., Hoffman, G. E., & Fiskum, G. (2006). Distribution of hypothalamic, hippocampal and other limbic peptidergic neuronal cell bodies giving rise to retinopetal fibers: Anterograde and retrograde tracing and neuropeptide immunohistochemical studies. Neuroscience, 140(3), 1089-1100. https://doi.org/10.1016/j.neuroscience.2006.02.081
Yu, G., & Sharp, B. M. (2012). Nicotine modulates multiple regions in the limbic stress network regulating activation of hypophysiotrophic neurons in hypothalamic paraventricular nucleus. Journal of Neurochemistry, 122(3), 628-640. https://doi.org/10.1111/j.1471-4159.2012.07785.x
Zuo, W., Xiao, C., Gao, M., Hopf, F. W., Krnjević, K., McIntosh, J. M., … Ye, J.-H. (2016). Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms. Scientific Reports, 6, 32937. https://doi.org/10.1038/srep32937