Size- and Halide-Dependent Auger Recombination in Lead Halide Perovskite Nanocrystals.
energy transfer
multiexcitons
nanocrystals
perovskite phases
ultrafast spectroscopy
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
17 Aug 2020
17 Aug 2020
Historique:
received:
31
03
2020
pubmed:
2
6
2020
medline:
2
6
2020
entrez:
2
6
2020
Statut:
ppublish
Résumé
Lead halide perovskite nanocrystals (NCs) hold strong promise for a variety of light-harvesting, emitting, and detecting applications, all of which, however, could be complicated by multicarrier Auger recombination. Therefore, complete documentation of the size- and composition-dependent Auger recombination rates of these NCs is highly desirable, as it can guide system design in many applications. Herein we report the synthesis and Auger measurements of monodisperse APbX
Identifiants
pubmed: 32476193
doi: 10.1002/anie.202004668
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
14292-14295Subventions
Organisme : National Natural Science Foundation of China
ID : 21975253
Informations de copyright
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692-3696;
M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stöferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Rainò, A. L. Efros, Nature 2018, 553, 189-193;
M. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk, Science 2017, 358, 745-750;
Q. A. Akkerman, G. Rainò, M. V. Kovalenko, L. Manna, Nat. Mater. 2018, 17, 394-405;
F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533-4542.
H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222-1225;
J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162-7167.
H. Utzat, W. Sun, A. E. K. Kaplan, F. Krieg, M. Ginterseder, B. Spokoyny, N. D. Klein, K. E. Shulenberger, C. F. Perkinson, M. V. Kovalenko, M. G. Bawendi, Science 2019, 363, 1068.
S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Nat. Commun. 2015, 6, 8056.
Y.-F. Xu, M.-Z. Yang, B.-X. Chen, X.-D. Wang, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, J. Am. Chem. Soc. 2017, 139, 5660-5663;
H. Wang, X. Wang, R. Chen, H. Zhang, X. Wang, J. Wang, J. Zhang, L. Mu, K. Wu, F. Fan, X. Zong, C. Li, ACS Energy Lett. 2019, 4, 40-47;
X. Zhu, Y. Lin, Y. Sun, M. C. Beard, Y. Yan, J. Am. Chem. Soc. 2019, 141, 733-738;
M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong, R. Xu, Angew. Chem. Int. Ed. 2018, 57, 13570-13574;
Angew. Chem. 2018, 130, 13758-13762;
H. Lu, X. Chen, J. E. Anthony, J. Johnson, M. C. Beard, J. Am. Chem. Soc. 2019, 141, 4919-4927;
X. Luo, R. Lai, Y. Li, Y. Han, G. Liang, X. Liu, T. Ding, J. Wang, K. Wu, J. Am. Chem. Soc. 2019, 141, 4186-4190;
S. He, X. Luo, X. Liu, Y. Li, K. Wu, J. Phys. Chem. Lett. 2019, 10, 5036-5040.
A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92-95;
E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, J. M. Luther, Sci. Adv. 2017, 3, eaao4204;
Q. A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J. M. Ball, M. Prato, A. Petrozza, L. Manna, Nat. Energy 2016, 2, 16194.
V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, Science 2000, 287, 1011-1013;
J. M. Pietryga, Y.-S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Brovelli, V. I. Klimov, Chem. Rev. 2016, 116, 10513-10622.
J. Lim, Y.-S. Park, K. Wu, H. J. Yun, V. I. Klimov, Nano Lett. 2018, 18, 6645-6653.
J. Wang, T. Ding, K. Wu, J. Am. Chem. Soc. 2018, 140, 7791-7794.
V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, Science 2000, 290, 314-317.
F. Fan, O. Voznyy, R. P. Sabatini, K. T. Bicanic, M. M. Adachi, J. R. McBride, K. R. Reid, Y.-S. Park, X. Li, A. Jain, R. Quintero-Bermudez, M. Saravanapavanantham, M. Liu, M. Korkusinski, P. Hawrylak, V. I. Klimov, S. J. Rosenthal, S. Hoogland, E. H. Sargent, Nature 2017, 544, 75-79;
K. Wu, Y.-S. Park, J. Lim, V. I. Klimov, Nat. Nanotechnol. 2017, 12, 1140-1147.
I. Robel, R. Gresback, U. Kortshagen, R. D. Schaller, V. I. Klimov, Phys. Rev. Lett. 2009, 102, 177404.
N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V. I. Klimov, Nano Lett. 2016, 16, 2349-2362;
K. Wu, G. Liang, Q. Shang, Y. Ren, D. Kong, T. Lian, J. Am. Chem. Soc. 2015, 137, 12792-12795;
J. Wang, T. Ding, J. Leng, S. Jin, K. Wu, J. Phys. Chem. Lett. 2018, 9, 3372-3377;
Y. Li, T. Ding, X. Luo, Z. Chen, X. Liu, X. Lu, K. Wu, Nano Res. 2019, 12, 619-623;
Y. Li, T. Ding, X. Luo, Y. Tian, X. Lu, K. Wu, Chem. Mater. 2020, 32, 549-556;
J. A. Castañeda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. B. Cruz, L. A. Padilha, ACS Nano 2016, 10, 8603-8609;
X. Luo, G. Liang, J. Wang, X. Liu, K. Wu, Chem. Sci. 2019, 10, 2459-2464;
Q. Li, Y. Yang, W. Que, T. Lian, Nano Lett. 2019, 19, 5620-5627.
Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi, D. H. Son, Nano Lett. 2018, 18, 3716-3722;
C. Wang, A. S. R. Chesman, J. J. Jasieniak, Chem. Commun. 2017, 53, 232-235.
R. Lai, K. Wu, J. Chem. Phys. 2019, 151, 194701;
D. P. Nenon, K. Pressler, J. Kang, B. A. Koscher, J. H. Olshansky, W. T. Osowiecki, M. A. Koc, L.-W. Wang, A. P. Alivisatos, J. Am. Chem. Soc. 2018, 140, 17760-17772.
R. K. Behera, S. Das Adhikari, S. K. Dutta, A. Dutta, N. Pradhan, J. Phys. Chem. Lett. 2018, 9, 6884-6891;
N. Mondal, A. De, A. Samanta, ACS Energy Lett. 2019, 4, 32-39.
X. Zhang, M. E. Turiansky, C. G. Van de Walle, J. Phys. Chem. C 2020, 124, 6022-6027;
X. Zhang, M. E. Turiansky, J.-X. Shen, C. G. Van de Walle, Phys. Rev. B 2020, 101, 140101.
Q. Shang, A. L. Kaledin, Q. Li, T. Lian, J. Chem. Phys. 2019, 151, 074705;
X. Luo, Y. Han, Z. Chen, Y. Li, G. Liang, X. Liu, T. Ding, C. Nie, M. Wang, F. N. Castellano, K. Wu, Nat. Commun. 2020, 11, 28.
C. Melnychuk, P. Guyot-Sionnest, J. Phys. Chem. Lett. 2018, 9, 2208-2211.
A. Pandey, P. Guyot-Sionnest, J. Chem. Phys. 2007, 127, 111104.
W. Qin, H. Liu, P. Guyot-Sionnest, ACS Nano 2014, 8, 283-291.
G. E. Cragg, A. L. Efros, Nano Lett. 2010, 10, 313-317.
V. K. Ravi, G. B. Markad, A. Nag, ACS Energy Lett. 2016, 1, 665-671.
B. A. Koscher, J. K. Swabeck, N. D. Bronstein, A. P. Alivisatos, J. Am. Chem. Soc. 2017, 139, 6566-6569.
F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai, Q. Shen, ACS Nano 2017, 11, 10373-10383.
J.-X. Shen, X. Zhang, S. Das, E. Kioupakis, C. G. Van de Walle, Adv. Energy Mater. 2018, 8, 1801027;
X. Zhang, J.-X. Shen, C. G. Van de Walle, Adv. Energy Mater. 2020, 10, 1902830.