Soil Microbes Trade-Off Biogeochemical Cycling for Stress Tolerance Traits in Response to Year-Round Climate Change.

climate change forest ecology microbial communities soil freezing warming winter

Journal

Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977

Informations de publication

Date de publication:
2020
Historique:
received: 25 10 2019
accepted: 19 03 2020
entrez: 2 6 2020
pubmed: 2 6 2020
medline: 2 6 2020
Statut: epublish

Résumé

Winter air temperatures are rising faster than summer air temperatures in high-latitude forests, increasing the frequency of soil freeze/thaw events in winter. To determine how climate warming and soil freeze/thaw cycles affect soil microbial communities and the ecosystem processes they drive, we leveraged the Climate Change across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest in the northeastern United States, where replicate field plots receive one of three climate treatments: warming (+5°C above ambient in the growing season), warming in the growing season + winter freeze/thaw cycles (+5°C above ambient +4 freeze/thaw cycles during winter), and no treatment. Soil samples were taken from plots at six time points throughout the growing season and subjected to amplicon (rDNA) and metagenome sequencing. We found that soil fungal and bacterial community composition were affected by changes in soil temperature, where the taxonomic composition of microbial communities shifted more with the combination of growing-season warming and increased frequency of soil freeze/thaw cycles in winter than with warming alone. Warming increased the relative abundance of brown rot fungi and plant pathogens but decreased that of arbuscular mycorrhizal fungi, all of which recovered under combined growing-season warming and soil freeze/thaw cycles in winter. The abundance of animal parasites increased significantly under combined warming and freeze/thaw cycles. We also found that warming and soil freeze/thaw cycles suppressed bacterial taxa with the genetic potential for carbon (i.e., cellulose) decomposition and soil nitrogen cycling, such as N fixation and the final steps of denitrification. These new soil communities had higher genetic capacity for stress tolerance and lower genetic capacity to grow or reproduce, relative to the communities exposed to warming in the growing season alone. Our observations suggest that initial suppression of biogeochemical cycling with year-round climate change may be linked to the emergence of taxa that trade-off growth for stress tolerance traits.

Identifiants

pubmed: 32477275
doi: 10.3389/fmicb.2020.00616
pmc: PMC7238748
doi:

Types de publication

Journal Article

Langues

eng

Pagination

616

Informations de copyright

Copyright © 2020 Garcia, Templer, Sorensen, Sanders-DeMott, Groffman and Bhatnagar.

Références

Nature. 2005 Jan 20;433(7023):298-301
pubmed: 15662420
PLoS One. 2011;6(9):e25092
pubmed: 21966422
PLoS One. 2011;6(7):e21800
pubmed: 21789182
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7033-8
pubmed: 26038557
Ecology. 2007 Jun;88(6):1386-94
pubmed: 17601131
Stand Genomic Sci. 2016 Feb 24;11:17
pubmed: 26918089
Ecology. 2007 Jun;88(6):1354-64
pubmed: 17601128
Appl Environ Microbiol. 2016 Oct 27;82(22):6518-6530
pubmed: 27590813
FEMS Microbiol Ecol. 2012 Dec;82(3):666-77
pubmed: 22738186
Microb Ecol. 2015 May;69(4):843-54
pubmed: 24889286
Appl Environ Microbiol. 2004 May;70(5):2867-79
pubmed: 15128545
Mol Microbiol. 2003 Mar;47(6):1513-22
pubmed: 12622809
ISME J. 2020 Jan;14(1):1-9
pubmed: 31554911
Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9
pubmed: 18695234
Microb Ecol. 2019 Apr;77(3):597-606
pubmed: 30105504
Cell Metab. 2015 Jul 7;22(1):31-53
pubmed: 26118927
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6341-6
pubmed: 24733885
J Bacteriol. 1997 Oct;179(20):6285-93
pubmed: 9335274
Glob Chang Biol. 2014 Nov;20(11):3568-77
pubmed: 24796872
Mol Microbiol. 2005 Feb;55(4):1015-24
pubmed: 15686550
FEMS Microbiol Ecol. 2015 Aug;91(8):fiv095
pubmed: 26253509
Microb Ecol. 2019 Jan;77(1):186-190
pubmed: 29948015
ISME J. 2012 Aug;6(8):1621-4
pubmed: 22402401
PeerJ. 2016 Jun 01;4:e2083
pubmed: 27280074
Front Microbiol. 2015 Aug 04;6:771
pubmed: 26300854
Front Microbiol. 2015 Feb 13;6:104
pubmed: 25762989
FEMS Microbiol Ecol. 2010 Aug;73(2):197-214
pubmed: 20528987
Front Microbiol. 2015 May 20;6:480
pubmed: 26042112
mSphere. 2018 Jul 18;3(4):
pubmed: 30021874
Glob Chang Biol. 2017 Apr;23(4):1598-1609
pubmed: 27658686
PLoS One. 2017 Feb 16;12(2):e0171928
pubmed: 28207766
Ecology. 2016 Dec;97(12):3359-3368
pubmed: 27912011
Appl Environ Microbiol. 2006 Jul;72(7):5069-72
pubmed: 16820507
FEMS Microbiol Ecol. 2017 Mar 1;93(3):
pubmed: 28073802
Science. 2001 Oct 26;294(5543):804-8
pubmed: 11679658
Appl Environ Microbiol. 2007 Aug;73(16):5261-7
pubmed: 17586664
J Cell Biochem. 2001;82(2):326-38
pubmed: 11527157
Microbiol Mol Biol Rev. 2006 Dec;70(4):1061-95
pubmed: 17158707
BMC Bioinformatics. 2013;14 Suppl 3:S9
pubmed: 23514627
PLoS One. 2013 Aug 06;8(8):e72958
pubmed: 23940820
Bioinformatics. 2010 Oct 1;26(19):2460-1
pubmed: 20709691
Nucleic Acids Res. 2017 Jan 4;45(D1):D507-D516
pubmed: 27738135
BMC Genomics. 2018 Apr 20;19(1):274
pubmed: 29678163
Front Microbiol. 2014 Nov 25;5:639
pubmed: 25505459
Glob Chang Biol. 2019 Mar;25(3):900-910
pubmed: 30417564
Front Microbiol. 2012 Dec 19;3:417
pubmed: 23267351
Front Microbiol. 2014 Oct 31;5:579
pubmed: 25400630
ISME J. 2012 May;6(5):1007-17
pubmed: 22134642
Appl Environ Microbiol. 2014 Mar;80(5):1777-86
pubmed: 24375144
Appl Environ Microbiol. 2010 Feb;76(4):999-1007
pubmed: 20023089
PLoS One. 2012;7(11):e49777
pubmed: 23209598
Curr Biol. 2018 Aug 20;28(16):2657-2664.e3
pubmed: 30078567
Science. 1994 Jan 14;263(5144):185-90
pubmed: 17839174
Glob Chang Biol. 2018 Jun;24(6):2377-2389
pubmed: 29215766
J Comput Biol. 2012 May;19(5):455-77
pubmed: 22506599
New Phytol. 2014 Jan;201(2):433-9
pubmed: 26207269
Glob Chang Biol. 2015 Feb;21(2):959-72
pubmed: 25156129
Microb Ecol. 2018 Feb;75(2):348-363
pubmed: 28741266
Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):49-60
pubmed: 20008385
Oecologia. 2001 Feb;126(4):543-562
pubmed: 28547240
Science. 2011 Aug 19;333(6045):988-93
pubmed: 21764754
PLoS One. 2007 Sep 12;2(9):e885
pubmed: 17849014
Appl Environ Microbiol. 2013 Mar;79(5):1545-54
pubmed: 23263967
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2960-5
pubmed: 22308456
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Ecology. 2009 Dec;90(12):3566-74
pubmed: 20120823
Mol Ecol. 2013 Nov;22(21):5271-7
pubmed: 24112409
ISME J. 2009 Jul;3(7):850-9
pubmed: 19322246
ISME J. 2016 Jul;10(7):1669-81
pubmed: 26905627
Ecology. 2011 Apr;92(4):892-902
pubmed: 21661552
Microbiol Mol Biol Rev. 2015 Jun;79(2):243-62
pubmed: 25971588
Annu Rev Cell Dev Biol. 2000;16:365-92
pubmed: 11031241
Nat Rev Microbiol. 2018 Jul;16(7):410-422
pubmed: 29795328
Nucleic Acids Res. 2014 Jan;42(Database issue):D568-73
pubmed: 24136997
Glob Chang Biol. 2013 Oct;19(10):3145-54
pubmed: 23744587
Science. 2002 Dec 13;298(5601):2173-6
pubmed: 12481133
Nature. 2013 May 30;497(7451):615-8
pubmed: 23676669

Auteurs

Maria O Garcia (MO)

Department of Biology, Boston University, Boston, MA, United States.

Pamela H Templer (PH)

Department of Biology, Boston University, Boston, MA, United States.

Patrick O Sorensen (PO)

Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

Rebecca Sanders-DeMott (R)

Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

Peter M Groffman (PM)

Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY, United States.
Cary Institute of Ecosystem Studies, Millbrook, NY, United States.

Jennifer M Bhatnagar (JM)

Department of Biology, Boston University, Boston, MA, United States.

Classifications MeSH