High-throughput and label-free isolation of senescent murine mesenchymal stem cells.
Journal
Biomicrofluidics
ISSN: 1932-1058
Titre abrégé: Biomicrofluidics
Pays: United States
ID NLM: 101293825
Informations de publication
Date de publication:
May 2020
May 2020
Historique:
received:
03
02
2020
accepted:
30
04
2020
entrez:
2
6
2020
pubmed:
2
6
2020
medline:
2
6
2020
Statut:
epublish
Résumé
Under internal or external insults such as aging and oxidative stresses, cells are induced into a senescent state and stop cellular division permanently. As senescent cells (SnCs) accumulate, the regeneration capacity of biological tissue would be compromised, which has been found to be associated with a plethora of age-related disorders. Therefore, isolating SnCs becomes necessary. To address the lack of effective surface markers for SnCs isolation, a label-free microfluidic device was proposed in this paper, in which a spiral microchannel was deployed to isolate SnCs based on their size differences. We adopted a well-received cellular senescence model by exerting excessive oxidative stress to murine mesenchymal stem cells. This model was then validated through a series of SnCs characterizations including size measurement, p16INK4a expression level, senescence-associated beta-galactosidase, and doubling time. The senescence chip demonstrated an efficiency of 75% and viability over 85% at a flow rate of 5 ml/min. The average cell size from the inner outlet was 5
Identifiants
pubmed: 32477445
doi: 10.1063/5.0011925
pii: 5.0011925
pmc: PMC7244328
doi:
Types de publication
Journal Article
Langues
eng
Pagination
034106Informations de copyright
Copyright © 2020 Author(s).
Références
Nat Med. 2017 Sep;23(9):1072-1079
pubmed: 28825716
Biotechnol Lett. 2014 Dec;36(12):2559-69
pubmed: 25129046
J Orthop Translat. 2019 Feb 26;17:55-63
pubmed: 31194093
Sci Rep. 2013;3:1475
pubmed: 23502529
J Clin Invest. 2014 Jan;124(1):169-73
pubmed: 24334456
Drug Chem Toxicol. 2020 Mar;43(2):213-218
pubmed: 30588854
Trends Mol Med. 2010 May;16(5):238-46
pubmed: 20444648
J Gerontol A Biol Sci Med Sci. 2017 Jun 1;72(6):780-785
pubmed: 27516624
Lab Chip. 2014 Jan 7;14(1):128-37
pubmed: 23949794
Nat Protoc. 2018 Jan;13(1):34-58
pubmed: 29215634
Cell. 2017 Jun 1;169(6):1000-1011
pubmed: 28575665
Aging Cell. 2018 Apr;17(2):
pubmed: 29336105
Sci Rep. 2017 May 17;7(1):1997
pubmed: 28515450
Lab Chip. 2009 Oct 21;9(20):2973-80
pubmed: 19789752
Exp Cell Res. 2011 Jul 1;317(11):1541-7
pubmed: 21376036
EBioMedicine. 2017 Jul;21:21-28
pubmed: 28416161
Trends Cell Biol. 2018 Jun;28(6):436-453
pubmed: 29477613
Aging Cell. 2012 Aug;11(4):722-5
pubmed: 22612594
Aging (Albany NY). 2012 Mar;4(3):159-65
pubmed: 22394614
Cytotherapy. 2010 Nov;12(7):881-7
pubmed: 20662612
PLoS One. 2008 May 21;3(5):e2213
pubmed: 18493317
Semin Cancer Biol. 2011 Dec;21(6):354-9
pubmed: 21925603
Biomaterials. 2019 Jan;190-191:1-10
pubmed: 30391798
J Cell Physiol. 2006 Dec;209(3):592-7
pubmed: 17001692
Exp Cell Res. 1965 Mar;37:614-36
pubmed: 14315085
Anal Chem. 2015 Oct 6;87(19):9584-8
pubmed: 26322520
Mol Cells. 2012 Jun;33(6):597-604
pubmed: 22570149
Nat Biomed Eng. 2017 Jul;1(7):
pubmed: 31372309
Lab Chip. 2011 Jun 7;11(11):1870-8
pubmed: 21505682
PLoS One. 2013 Oct 16;8(10):e75901
pubmed: 24146787
Cell Death Dis. 2018 Feb 14;9(2):239
pubmed: 29445159
Aging (Albany NY). 2011 Dec;3(12):1178-91
pubmed: 22184282
Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7
pubmed: 7568133
Cell. 2013 Jan 17;152(1-2):340-51
pubmed: 23332765
Aging Cell. 2017 Oct;16(5):1043-1050
pubmed: 28699239
Cell. 2013 Sep 12;154(6):1194-205
pubmed: 24034244
Lab Chip. 2018 Mar 13;18(6):878-889
pubmed: 29459915
Exp Cell Res. 1961 Dec;25:585-621
pubmed: 13905658
J Gerontol A Biol Sci Med Sci. 2016 Nov;71(11):1407-1414
pubmed: 27535963
Aging Cell. 2010 Aug;9(4):519-26
pubmed: 20415721
Nat Rev Mol Cell Biol. 2014 Jul;15(7):482-96
pubmed: 24954210