Mineral Distribution Spatially Patterns Bone Marrow Stromal Cell Behavior on Monolithic Bone Scaffolds.


Journal

Acta biomaterialia
ISSN: 1878-7568
Titre abrégé: Acta Biomater
Pays: England
ID NLM: 101233144

Informations de publication

Date de publication:
08 2020
Historique:
received: 18 02 2020
revised: 30 04 2020
accepted: 25 05 2020
pubmed: 2 6 2020
medline: 15 5 2021
entrez: 2 6 2020
Statut: ppublish

Résumé

Interfaces between soft tissue and bone are characterized by transitional gradients in composition and structure that mediate substantial changes in mechanical properties. For interfacial tissue engineering, scaffolds with mineral gradients have shown promise in controlling osteogenic behavior of seeded bone marrow stromal cells (bMSCs). Previously, we have demonstrated a 'top-down' method for creating monolithic bone-derived scaffolds with patterned mineral distributions similar to native tissue. In the present work, we evaluated the ability of these scaffolds to pattern osteogenic behavior in bMSCs in basic, osteogenic, and chondrogenic biochemical environments. Immunohistochemical (IHC) and histological stains were used to characterize cellular behavior as a function of local mineral content. Alkaline phosphatase, an early marker of osteogenesis, and osteocalcin, a late marker of osteogenesis, were positively correlated with mineral content in basic, osteogenic, and chondrogenic media. The difference in bMSC behavior between the mineralized and demineralized regions was most pronounced in an basic biochemical environment. In the mineralized regions of the scaffold, osteogenic markers were clearly present as early as 4 days in culture. In osteogenic media, osteogenic behavior was observed across the entire scaffold, whereas in chondrogenic media, there was an overall reduction in osteogenic biomarkers. Overall, these results indicate local mineral content of the scaffold plays a key role in spatially patterning bMSC behavior. Our results can be utilized for the development of interfacial tissue engineered scaffolds and understanding the role of local environment in determining bMSC behavior. STATEMENT OF SIGNIFICANCE: Soft tissue-to-bone interfaces, such as tendon-bone, ligament-bone, and cartilage-bone, are ubiquitous in mammalian musculoskeletal systems. These interfacial tissues have distinct, hierarchically-structured gradients of cellular, biochemical, and materials components. Given the complexity of the biological structures, interfacial tissues present unique challenges for tissue engineering. Here, we demonstrate that material-derived cues can spatially pattern osteogenic behavior in bone marrow stromal cells (bMSCs). Specifically, we observed that when the bMSCs are cultured on bone-derived scaffolds with mineral gradients, cells in contact with higher mineral content display osteogenic behavior at earlier times than those on the unmineralized substrate. The ability to pattern the cellular complexity found in native interfaces while maintaining biologically relevant structures is a key step towards creating engineered tissue interfaces.

Identifiants

pubmed: 32479819
pii: S1742-7061(20)30302-0
doi: 10.1016/j.actbio.2020.05.032
pmc: PMC7372954
mid: NIHMS1600885
pii:
doi:

Substances chimiques

Minerals 0

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

274-285

Subventions

Organisme : NIAMS NIH HHS
ID : F31 AR070009
Pays : United States

Informations de copyright

Copyright © 2020. Published by Elsevier Ltd.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

J Biochem. 1997 Feb;121(2):317-24
pubmed: 9089406
Dent Mater. 2016 Nov;32(11):1374-1384
pubmed: 27637551
Bone. 2015 Jan;70:66-72
pubmed: 25260931
Regen Biomater. 2018 Mar;5(2):93-103
pubmed: 29644091
Tissue Eng Regen Med. 2018 Nov 17;16(1):69-80
pubmed: 30815352
Muscles Ligaments Tendons J. 2013 Aug 11;3(3):220-8
pubmed: 24367784
Int J Nanomedicine. 2015 Feb 17;10:1425-47
pubmed: 25733834
J Biomater Sci Polym Ed. 2019 Jan;30(1):34-48
pubmed: 30086655
Biomaterials. 2018 Dec;186:64-79
pubmed: 30296596
Acta Biomater. 2012 Apr;8(4):1576-85
pubmed: 22266030
Stem Cells. 2010 Sep;28(9):1590-601
pubmed: 20882636
Adv Healthc Mater. 2019 Oct;8(19):e1900831
pubmed: 31464099
J Anat. 1998 Aug;193 ( Pt 2):161-78
pubmed: 9827632
Tissue Eng Part A. 2010 Jan;16(1):179-89
pubmed: 19678762
Adv Healthc Mater. 2019 Apr;8(7):e1800806
pubmed: 30536862
Int J Nanomedicine. 2015 Jan 12;10:567-84
pubmed: 25609962
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3299-304
pubmed: 19820164
Materials (Basel). 2019 Apr 26;12(9):
pubmed: 31027339
MRS Commun. 2017 Sep;7(3):289-308
pubmed: 29333332
Nanotheranostics. 2018 Jan 1;2(1):42-58
pubmed: 29291162
Acta Biomater. 2017 Jul 1;56:110-117
pubmed: 27989921
Stem Cell Res Ther. 2019 Jan 24;10(1):44
pubmed: 30678726
Polymers (Basel). 2017 Aug 23;9(9):
pubmed: 30965692
Knee Surg Sports Traumatol Arthrosc. 2013 Jul;21(7):1502-9
pubmed: 22868350
Tissue Eng Part A. 2012 Apr;18(7-8):757-67
pubmed: 21992088
ACS Appl Mater Interfaces. 2019 Jul 31;11(30):26559-26570
pubmed: 31267742
Adv Mater. 2018 May 30;:e1706706
pubmed: 29847696
PLoS One. 2014 May 06;9(5):e96801
pubmed: 24802416
Connect Tissue Res. 2012;53(2):95-105
pubmed: 22185608
Exp Ther Med. 2014 May;7(5):1147-1150
pubmed: 24940401
Acta Biomater. 2020 Aug;112:274-285
pubmed: 32479819
Biotechnol Adv. 2014 Mar-Apr;32(2):462-84
pubmed: 24417915
J Tissue Eng Regen Med. 2019 Aug;13(8):1453-1465
pubmed: 31115161
Stem Cell Res Ther. 2018 Mar 1;9(1):52
pubmed: 29490668
Biomaterials. 2016 Oct;104:168-81
pubmed: 27454063
Sci Rep. 2018 Nov 15;8(1):16887
pubmed: 30442906
Nano Lett. 2009 Jul;9(7):2763-8
pubmed: 19537737
Biomaterials. 2012 Jan;33(3):846-55
pubmed: 22048006
Stem Cell Res Ther. 2019 Aug 14;10(1):254
pubmed: 31412905
Methods Cell Biol. 2008;86:257-78
pubmed: 18442651
Bone. 2010 Dec;47(6):1076-9
pubmed: 20817052
Regen Med. 2007 Jul;2(4):383-90
pubmed: 17635046
Med Sci Monit Basic Res. 2016 Sep 26;22:95-106
pubmed: 27667570
PLoS One. 2015 Aug 11;10(8):e0135519
pubmed: 26262877
Biomaterials. 2006 Jul;27(19):3675-83
pubmed: 16519932
J Vis Exp. 2015 Feb 09;(96):e51999
pubmed: 25742362
Sci Rep. 2018 Jul 5;8(1):10181
pubmed: 29976928
Front Biosci. 2007 May 01;12:3068-92
pubmed: 17485283
Plast Reconstr Surg. 2008 Dec;122(6):1649-59
pubmed: 19050517
Calcif Tissue Int. 2000 Oct;67(4):314-20
pubmed: 11000346
J Craniofac Surg. 2015 Sep;26(6):1992-6
pubmed: 26147021
Osteoarthritis Cartilage. 2006 Feb;14(2):179-89
pubmed: 16257243
Tissue Eng. 2004 Jan-Feb;10(1-2):81-92
pubmed: 15009933
Biomed Res Int. 2018 Nov 1;2018:4025083
pubmed: 30515396
Osteoarthritis Cartilage. 2010 May;18(5):714-23
pubmed: 20175974
J Biomed Mater Res A. 2019 Mar;107(3):586-596
pubmed: 30390410
ACS Biomater Sci Eng. 2019 Jun 10;5(6):2988-2997
pubmed: 31211246
Knee Surg Relat Res. 2012 Sep;24(3):137-45
pubmed: 22977790
Rep Biochem Mol Biol. 2017 Apr;5(2):73-82
pubmed: 28367467
Anal Quant Cytol Histol. 2001 Aug;23(4):291-9
pubmed: 11531144
Histochem J. 1979 Jul;11(4):447-55
pubmed: 91593
Tissue Eng Part B Rev. 2017 Jun;23(3):268-280
pubmed: 27846781
Langmuir. 2016 Feb 23;32(7):1808-17
pubmed: 26795271
PLoS One. 2015 Mar 13;10(3):e0120374
pubmed: 25769043
Int J Biol Macromol. 2019 Jan;121:1054-1060
pubmed: 30359655
ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2842-9
pubmed: 24433042
Acta Biomater. 2016 Jan;29:42-51
pubmed: 26597546

Auteurs

Hao Zhou (H)

Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.

Alexander J Boys (AJ)

Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.

Jordan B Harrod (JB)

Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States.

Lawrence J Bonassar (LJ)

Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States. Electronic address: lb244@cornell.edu.

Lara A Estroff (LA)

Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Kavli Institute for Nanoscale Science at Cornell, Cornell University, Ithaca, New York 14853, United States. Electronic address: lae37@cornell.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH