In-vitro bioaccessibility and bioavailability of heavy metals in mineral clay complex used in natural health products.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 06 2020
01 06 2020
Historique:
received:
27
09
2018
accepted:
29
04
2020
entrez:
3
6
2020
pubmed:
3
6
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Commercial mineral clays that claim to have healing properties are also known to contain trace amounts of heavy metals, albeit the risk of consuming many of them is not entirely known. The primary objective of this study was to evaluate the in vitro bioaccessibility and bioavailability of Arsenic (As), Cadmium (Cd) and Lead (Pb) in mineral clay samples collected from the Sierra Mountains (USA) using the Unified Bioaccessibility Research Group of Europe (UBM) method and the Caco-2 permeability assay, respectively. After UMB-gastric (UBM-G) digestion, As and Pb bioaccessibility were lower compared to Cd and decreased further in the UMB-gastrointestinal (UBM-GI) assay. Bioavailability estimates using the Caco-2 cell showed very low to non-detectable permeability for all 3 heavy metals. Thus, while initial heavy metal ranged from 3.8-17 ppm, 0.024-0.061ppm, and 5.8-20 ppm for As, Cd, and Pb, respectively, the bioavailability for these metals was reduced to very low levels that followed: non-detectable values of As, <0.007ppm of Cd, and <0.1ppm of Pb. Using UBM-digestion to mimic bioaccessibility, followed by Caco-2 cell bioavailability enabled us to conclude that in vitro assessment of heavy metal exposure associated with mineral clay-based natural health products does not pose a potential hazard to consumers.
Identifiants
pubmed: 32483124
doi: 10.1038/s41598-020-65449-4
pii: 10.1038/s41598-020-65449-4
pmc: PMC7264141
doi:
Substances chimiques
Biological Products
0
Metals, Heavy
0
Soil Pollutants
0
Cadmium
00BH33GNGH
Lead
2P299V784P
Arsenic
N712M78A8G
Clay
T1FAD4SS2M
Types de publication
Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8823Références
Carretero, M. I. et al. Clay minerals and their beneficial effects upon human health. A review. Applied Clay Sci. 21, 155–163 (2002).
doi: 10.1016/S0169-1317(01)00085-0
Johns, T. & Duquette, M. Detoxification and mineral supplementation as functions of geophagy. Amer. J. Clin. Nutri. 53(2), 448–56 (1991).
doi: 10.1093/ajcn/53.2.448
Miller, M. J. et al. Early relief of osteoarthritis symptoms with a natural mineral supplement and a herbomineral combination: a randomized controlled trial [ISRCTN38432711]. J Inflam. 2, 1 (2005).
doi: 10.1186/1476-9255-2-11
Miller, M. J., Ahmed, S., Bobrowski, P. & Haqqi, T. M. Suppression of human cartilage degradation and chondrocyte activation by a unique mineral supplement (Sierrasil™) and a cat’s claw extract, vincaria®. J. Amer. Nutraceut.l Assoc. 7(2), 32–39 (2004).
Bentley, M. United states patent No. US 7910136B2 (2011).
Evans, M., Wilson, D. & Guthrie, N. Efficacy of a natural mineral complex in North American adults with osteoarthritis of the knee: a randomized double-blind placebo-controlled study. Open Access Rheumatol.: Res. Rev. 6, 91–103 (2014).
doi: 10.2147/OARRR.S71161
WHO (World Health Organization). “Chronic Rheumatic Conditions.” Chronic diseases and health promotion. http://www.who.int/chp/topics/rheumatic/en/ (2012).
Arthritis Alliance of Canada. The impact of arthritis in Canada: Today and over the next 30 years. http://www.arthritisalliance.ca/images/PDF/eng/Initiatives/20111022_2200_impact_of _arthritis.pdf (2011).
NHPD 2015: Quality of natural health products guide: Health Canada. V3.1. https://www.canada.ca/en/health-canada/services/drugs-health-products/natural-non-prescription/legislation-guidelines/guidance-documents/quality-guide.html (2015).
Intawongse, M. & Dean, J. R. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil. Environ. Pollut. 152, 60–72 (2008).
doi: 10.1016/j.envpol.2007.05.022
He, M., Ke, C. H. & Wang, W. X. Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species. J. Agric. Food Chem. 58, 3517–3523 (2010).
doi: 10.1021/jf100227n
Cheng, Y.-L., Presland, J. E., Anderson, M. B. & George, W. J. Solubility and bioavailability of lead following oral ingestion of vitrified slagged aggregate. J. Hazard. Mater. 27, 137–147 (1991).
doi: 10.1016/0304-3894(91)80026-K
Mounicou, S., Szpunar, J., Andrey, D., Blake, C. & Lobinski, R. Development of a sequential enzymolysis approach for the evaluation of the bioaccessibility of Cd and Pb from coca. Analyst 127, 1638–1641 (2002).
doi: 10.1039/b207427n
Laparra, J. M., Velez, D., Barbera, R., Montoro, R. & Farre, R. Bioaccessiblity and transport by Caco-2 cells of organoarsenical species present in seafood. J. Agric. Food Chem. 55, 5892–5897 (2007).
doi: 10.1021/jf070490f
Fu, J. & Cui, Y. In vitro digestion/Caco-2 cell model to estimate cadmium and lead bioaccessiblity/bioavailabilty in two vegetables: the influence of cooking and additives. J. Food Chem. Toxicol. 59, 215–221 (2013).
doi: 10.1016/j.fct.2013.06.014
Beyer, W. N. et al. Bioaccessibility tests accurately estimate bioavailability of lead to quail. Environ. Toxicol. Chem. 35(9), 2311–2319, https://doi.org/10.1002/etc.3399 (2016).
doi: 10.1002/etc.3399
pubmed: 26876015
Denys, S., Tack, K., Caboche, J., & Delalain, P. Assessing metals bioaccessibility to man in human health risk assessment of contaminated site. Conference DIFPOLMINE: Quel devenir pour les grands sites pollués par des métaux? What does the future hold for large metal-polluted sites, Montpellier, France. pp.NC (2006).
Wragg, J. et al. Inter-laboratory trial of a unified bioaccessibility testing procedure. Nottingham, UK, British Geological Survey. https://doi.org/10.1016/j.scitotenv.2011.05.019 (2009).
Wragg, J. et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Sci. Total Environ. 409, 4016–4030 (2011).
pubmed: 21703664
Juhasz, A. L. et al. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere. 69, 961–966 (2007).
doi: 10.1016/j.chemosphere.2007.05.018
Pan, W. et al. Bioaccessibility of heavy metals in vegetables and its association with the physicochemical characteristics. Environ. Sci. Pollut. Res. Int. 23(6), 5335–5341 (2016).
doi: 10.1007/s11356-015-5726-6
Rodriguez, R. R., Basta, N. T., Casteel, S. W. & Pace, L. W. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environ. Sci. Technol. 33(4), 642–649 (1999).
doi: 10.1021/es980631h
Ruby, M. V., Davis, A., Schoof, R., Eberle, S. & Sellstone, C. M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 30(2), 422–430, https://doi.org/10.1021/es950057z (1996).
doi: 10.1021/es950057z
Pelfrene, A. et al. Bioaccessibility of trace elements as affected by soil parameters in smelter-contaminated agricultural soils: A statistical modeling approach. Environ. Pollut. 160, 130–138 (2012).
doi: 10.1016/j.envpol.2011.09.008
Maulvault, A. L. et al. Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab. J. Food Chem. Toxicol. 49, 2808–2815 (2011).
doi: 10.1016/j.fct.2011.07.059
Neilson, A. P. & Ferruzzi, M. G. Influence of formulation and processing on absorption and metabolism of flavan‐3‐ols from tea and cocoa. Ann. Rev. Food Sci. Technol. 2, 125–151 (2011).
doi: 10.1146/annurev-food-022510-133725
Artursson, P., Palm, K. & Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 64, 280–289 (2012).
doi: 10.1016/j.addr.2012.09.005
Garcia, M. N., Flowers, C. & Cook, J. D. The Caco-2 cell culture system can be used as a model to study food iron availability. J. Nutri. 126, 251–258 (1996).
doi: 10.1093/jn/126.1.251
Glahn, R. P. et al. Decreased citrate improves iron availability from infant formula: application of an in vitro digestion/Caco-2 cell culture model. J. Nutri. 128, 257–264 (1998).
doi: 10.1093/jn/128.2.257
Glahn, R. P., Lee, O. A., Yeung, A., Goldman, M. I. & Miller, D. D. Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J. Nutri. 128, 1555–1561 (1998).
doi: 10.1093/jn/128.9.1555
Glahn, R. P. & Van Campen, D. R. Iron uptake is enhanced in Caco-2 cell monolayers by cysteine and reduced cysteinyl glycine. J. Nutri. 127, 642–647 (1997).
doi: 10.1093/jn/127.4.642
Glahn, R. P., Wien, E. M., Van Campen, D. R. & Miller, D. D. Caco-2 cell iron uptake from meat and casein digests parallels in vivo studies: Use of a novel in vitro method for rapid estimation of iron bioavailability. J. Nutri. 126(1), 332–9 (1996).
doi: 10.1093/jn/126.1.332
Siedlikowski, M. et al. Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America: In vitro and epidemiological studies. Environ. Res. 149, 266–273, https://doi.org/10.1016/j.envres.2016.02.013 (2016).
doi: 10.1016/j.envres.2016.02.013
pubmed: 26896323
pmcid: 4907874
Morgan, J. N. Effects of Processing on Heavy Metal Content of Foods. Adv. Experi. Med. Biol. 459, 195–211 (1999).
doi: 10.1007/978-1-4615-4853-9_13
Liu, B., Shiwei, A., Zhang, W., Huang, D. & Zhang, Y. Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China. Sci. Total Environ. 609, 822–829 (2017).
doi: 10.1016/j.scitotenv.2017.07.215
FDA. Arsenic, lead and cadmium in food ingredients. https://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm521427.htm#arsenic_leadcadmium (2017).
Koch, I. et al. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills. Toxicol. Appl. Pharmacol. 222, 357–364 (2007).
doi: 10.1016/j.taap.2006.12.005
Koch, I. et al. Bioaccessibility of lead and arsenic in traditional Indian medicines. Sci. Total Environ. 409, 4545–4552 (2011).
doi: 10.1016/j.scitotenv.2011.07.059
Calatayud, M. et al. Mercury and selenium in fish and shellfish: occurrence bioaccessibility and uptake by Caco-2 cells. J. Food Chem. Toxicol. 50, 2696–2702 (2012).
doi: 10.1016/j.fct.2012.05.028
Tokalioglu, S., Clough, R., Foulkes, M. & Worsfold, P. Bioaccessibility of Cr, Cu, Fe, Mg, Mn, Mo, Se and Zn from nutritional supplements by the unified BARGE method. Food chem. 150, 321–327 (2014).
doi: 10.1016/j.foodchem.2013.10.151
USEPA. Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. U.S. environmental protection agency, OSWER 9285, 7–80 (2007).
Denys, S. et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ. Sci. Technol. 46, 6252–6260 (2012).
doi: 10.1021/es3006942
Ringling, C. & Rychlik, M. Simulation of food folate digestion and bioavailability of an oxidation product of 5-methyltetrahydrofolate. Nutrients. 9(9), 969, https://doi.org/10.3390/nu9090969 (2017).
doi: 10.3390/nu9090969
pmcid: 5622729
Basta, N. T. & Juhasz, A. Using In vivo bioavailability and/or in vitro gastrointestinal bioaccessibility testing to adjust human exposure to arsenic from soil ingestion. Rev. Mineral. Geochem. 9, 79 (2014).
US EPA, Methods for the Determination of Metals in Environmental Samples Supplement 1 (EPA/600/R-94/111), Rev 5.4, 1994, Method 200.8 Determination of Trace elements by Inductively Coupled Plasma – Mass Spectrometry.
USEPA method 1340. Validated test method 1340: In vitro bioaccessibility assay for lead in soil. https://www.epa.gov/sites/production/files/2015-12/documents/1340.pdf (2015).
Chen, X., Elisia, I. & Kitts, D. D. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design. J. Pharmacol. Toxicol. Methods. 61(3), 334–342 (2010).
doi: 10.1016/j.vascn.2010.02.004