Postnatal loss of the insulin receptor in osteoprogenitor cells does not impart a metabolic phenotype.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
01 06 2020
Historique:
received: 02 03 2020
accepted: 07 05 2020
entrez: 3 6 2020
pubmed: 3 6 2020
medline: 27 11 2020
Statut: epublish

Résumé

The relationship between osteoblast-specific insulin signaling, osteocalcin activation and gluco-metabolic homeostasis has proven to be complex and potentially inconsistent across animal-model systems and in humans. Moreover, the impact of postnatally acquired, osteoblast-specific insulin deficiency on the pancreas-to-skeleton-to-pancreas circuit has not been studied. To explore this relationship, we created a model of postnatal elimination of insulin signaling in osteoprogenitors. Osteoprogenitor-selective ablation of the insulin receptor was induced after ~10 weeks of age in IR

Identifiants

pubmed: 32483283
doi: 10.1038/s41598-020-65717-3
pii: 10.1038/s41598-020-65717-3
pmc: PMC7264347
doi:

Substances chimiques

Glycated Hemoglobin A 0
Insulin 0
Osteocalcin 104982-03-8
Receptor, Insulin EC 2.7.10.1

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8842

Subventions

Organisme : NIDDK NIH HHS
ID : R01 DK084045
Pays : United States
Organisme : NIAMS NIH HHS
ID : R21 AR070620
Pays : United States

Références

Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell, 130(3), 456–69, https://doi.org/10.1016/j.cell.2007.05.047 (2007).
doi: 10.1016/j.cell.2007.05.047
Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell, 142(2), 309–19, https://doi.org/10.1016/j.cell.2010.06.002 (2010).
doi: 10.1016/j.cell.2010.06.002
Ferron, M. et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell, 142(2), 296–308, https://doi.org/10.1016/j.cell.2010.06.003 (2010).
doi: 10.1016/j.cell.2010.06.003
Andrews, N. A. Skeletal regulation of glucose metabolism: challenges in translation from mouse to man. IBMS BoneKEy, 10(353), https://doi.org/10.1038/bonekey.2013.87 (2013).
Manolagas, S. C. & Kronenberg, H. M. “Reproducibility of results in preclinical studies: a perspective from the bone field. J Bone Miner Res, 29(10), 2131–40, https://doi.org/10.1002/jbmr.2293 (2014).
doi: 10.1002/jbmr.2293
Lambert, L. J. et al. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis Model Mech, 9(10), 1169–1179, https://doi.org/10.1242/dmm.025247 (2016).
doi: 10.1242/dmm.025247
Pi, M. et al. Evidence for Osteocalcin Binding and Activation of GPRC6A in beta-Cells. Endocrinology, 157(5), 1866–80, https://doi.org/10.1210/en.2015-2010 (2016).
doi: 10.1210/en.2015-2010
Thrailkill, K. et al. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone. J Diabetes Res 2014, 703589, https://doi.org/10.1155/2014/703589 (2014).
doi: 10.1155/2014/703589 pubmed: 24963495 pmcid: 4052184
Pi, M. Wu, Y. & Quarles, L. D. “GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res, 26(7), 1680–3, https://doi.org/10.1002/jbmr.390 (2011).
doi: 10.1002/jbmr.390
Huang, H. H. Harrington, S. & L. Stehno-Bittel, “The Flaws and Future of Islet Volume Measurements. Cell Transplant, 27(7), 1017–1026, https://doi.org/10.1177/0963689718779898 (2018).
doi: 10.1177/0963689718779898
Thrailkill, K. M. et al. Determinants of undercarboxylated and carboxylated osteocalcin concentrations in type 1 diabetes. Osteoporos Int, 23(6), 1799–806, https://doi.org/10.1007/s00198-011-1807-7 (2012).
doi: 10.1007/s00198-011-1807-7
Sabek, O. M. et al. Serum C-peptide and osteocalcin levels in children with recently diagnosed diabetes. Endocrinol Diabetes Metab, 3(1), e00104, https://doi.org/10.1002/edm2.104 (2020).
Kulkarni, R. N., et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell, 96(3), 329–39, https://doi.org/10.1016/s0092-8674(00)80546-2 (1999).
doi: 10.1016/S0092-8674(00)80546-2
Michael, M. D. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell, 6(1), 87–97, https://www.ncbi.nlm.nih.gov/pubmed/10949030 (2000).
doi: 10.1016/S1097-2765(05)00015-8
Rached, M. T. et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest, 120(1), 357–68, https://doi.org/10.1172/JCI39901 (2010).
doi: 10.1172/JCI39901
Iyer, S. et al. Deletion of FoxO1, 3, and 4 in Osteoblast Progenitors Attenuates the Loss of Cancellous Bone Mass in a Mouse Model of Type 1 Diabetes. J Bone Miner Res, 32(1), 60–69, https://doi.org/10.1002/jbmr.2934 (2017).
doi: 10.1002/jbmr.2934
Pi, M. et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One 3(12), e3858, https://doi.org/10.1371/journal.pone.0003858 (2008).
doi: 10.1371/journal.pone.0003858 pubmed: 19050760 pmcid: 2585477
Jorgensen, C. V. et al. Metabolic and skeletal homeostasis are maintained in full locus GPRC6A knockout mice. Sci Rep, 9(1), 5995, https://doi.org/10.1038/s41598-019-41921-8 (2019).
S. Smajilovic et al. The L-alpha-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in L-arginine-induced insulin release. Amino Acids, 44(2), 383–90, https://doi.org/10.1007/s00726-012-1341-8 (2013).
doi: 10.1007/s00726-012-1341-8
Clemmensen, C. et al. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice. J Endocrinol, 217(2), 151–60, https://doi.org/10.1530/JOE-12-0550 (2013).
doi: 10.1530/JOE-12-0550
Clemmensen, C. Jorgensen, C. V. Smajilovic, S. & H. Brauner-Osborne, “Robust GLP-1 secretion by basic L-amino acids does not require the GPRC6A receptor. Diabetes Obes Metab, 19(4), 599–603, https://doi.org/10.1111/dom.12845 (2017).
doi: 10.1111/dom.12845
Goren, H. J. Kulkarni, R. N. & Kahn, C. R. Glucose homeostasis and tissue transcript content of insulin signaling intermediates in four inbred strains of mice: C57BL/6, C57BLKS/6, DBA/2, and 129X1. Endocrinology, 145(7), 3307–23, https://doi.org/10.1210/en.2003-1400 (2004).
doi: 10.1210/en.2003-1400
Berglund, E. D. et al. Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes, 57(7), 1790–9, https://doi.org/10.2337/db07-1615 (2008).
doi: 10.2337/db07-1615
Kido, Y. Philippe, N. Schaffer, A. A. & Accili, D. Genetic modifiers of the insulin resistance phenotype in mice. Diabetes, 49(4), 589–96, https://doi.org/10.2337/diabetes.49.4.589 (2000).
doi: 10.2337/diabetes.49.4.589
Kulkarni, R. N. et al. Impact of genetic background on development of hyperinsulinemia and diabetes in insulin receptor/insulin receptor substrate-1 double heterozygous mice. Diabetes, 52(6), 1528–34, https://doi.org/10.2337/diabetes.52.6.1528 (2003).
doi: 10.2337/diabetes.52.6.1528
Heydemann, A. An Overview of Murine High Fat Diet as a Model for Type 2 Diabetes Mellitus. J Diabetes Res 2016, 2902351, https://doi.org/10.1155/2016/2902351 (2016).
doi: 10.1155/2016/2902351 pubmed: 27547764 pmcid: 4983380
Dallas, S. L. Xie, Y. Shiflett, L. A. & Ueki, Y. Mouse Cre Models for the Study of Bone Diseases. Curr Osteoporos Rep, 16(4), 466–477, https://doi.org/10.1007/s11914-018-0455-7 (2018).
doi: 10.1007/s11914-018-0455-7
F. Elefteriou and Yang, X. Genetic mouse models for bone studies–strengths and limitations. Bone, 49(6), 1242–54, https://doi.org/10.1016/j.bone.2011.08.021 (2011).
doi: 10.1016/j.bone.2011.08.021
M. Gossen and Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proceedings of the National Academy of Sciences of the United States of America, 89(12), 5547–51, http://www.ncbi.nlm.nih.gov/pubmed/1319065 (1992).
doi: 10.1073/pnas.89.12.5547
Fowlkes, J. L. et al. Constitutive activation of MEK1 in osteoprogenitors increases strength of bone despite impairing mineralization. Bone, 130, 115106, https://doi.org/10.1016/j.bone.2019.115106 (2020).
doi: 10.1016/j.bone.2019.115106
Bruning, J. C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell, 2(5), 559–69, http://www.ncbi.nlm.nih.gov/pubmed/9844629 (1998).
doi: 10.1016/S1097-2765(00)80155-0
Thrailkill, K. M. et al. Genetic ablation of SGLT2 function in mice impairs tissue mineral density but does not affect fracture resistance of bone. Bone, 133, 115254, https://doi.org/10.1016/j.bone.2020.115254 (2020).
doi: 10.1016/j.bone.2020.115254

Auteurs

John L Fowlkes (JL)

University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY, USA. fowlkesjohnl@uky.edu.
Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA. fowlkesjohnl@uky.edu.

R Clay Bunn (R)

University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY, USA.
Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.

Evangelia Kalaitzoglou (E)

University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY, USA.
Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.

Phil Ray (P)

University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY, USA.

Iuliana Popescu (I)

University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY, USA.

Kathryn M Thrailkill (KM)

University of Kentucky, Barnstable Brown Diabetes Center, Lexington, KY, USA.
Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH