Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel.


Journal

Nature structural & molecular biology
ISSN: 1545-9985
Titre abrégé: Nat Struct Mol Biol
Pays: United States
ID NLM: 101186374

Informations de publication

Date de publication:
07 2020
Historique:
received: 13 01 2020
accepted: 10 04 2020
pubmed: 3 6 2020
medline: 21 10 2020
entrez: 3 6 2020
Statut: ppublish

Résumé

Cyclic nucleotide-gated (CNG) channels convert cyclic nucleotide (CN) binding and unbinding into electrical signals in sensory receptors and neurons. The molecular conformational changes underpinning ligand activation are largely undefined. We report both closed- and open-state atomic cryo-EM structures of a full-length Caenorhabditis elegans cyclic GMP-activated channel TAX-4, reconstituted in lipid nanodiscs. These structures, together with computational and functional analyses and a mutant channel structure, reveal a double-barrier hydrophobic gate formed by two S6 amino acids in the central cavity. cGMP binding produces global conformational changes that open the cavity gate located ~52 Å away but do not alter the structure of the selectivity filter-the commonly presumed activation gate. Our work provides mechanistic insights into the allosteric gating and regulation of CN-gated and nucleotide-modulated channels and CNG channel-related channelopathies.

Identifiants

pubmed: 32483338
doi: 10.1038/s41594-020-0433-5
pii: 10.1038/s41594-020-0433-5
pmc: PMC7354226
mid: NIHMS1583976
doi:

Substances chimiques

Caenorhabditis elegans Proteins 0
Ion Channels 0
Ligands 0
Lipids 0
tax-4 protein, C elegans 0
Cyclic GMP H2D2X058MU

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

625-634

Subventions

Organisme : NIGMS NIH HHS
ID : P41 GM103310
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM055440
Pays : United States
Organisme : NCRR NIH HHS
ID : P41 RR001209
Pays : United States
Organisme : NEI NIH HHS
ID : R01 EY027800
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM085234
Pays : United States
Organisme : NIGMS NIH HHS
ID : U24 GM129539
Pays : United States
Organisme : NIH HHS
ID : S10 OD019994
Pays : United States

Références

Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).
pubmed: 12087135 doi: 10.1152/physrev.00008.2002
Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide–gated channels. Annu. Rev. Neurosci. 19, 235–263 (1996).
pubmed: 8833443 doi: 10.1146/annurev.ne.19.030196.001315
Varnum, M. D. & Dai, G. in The Hankbook of Ion Channels (eds J. Zheng & M.C. Trudeau) 361−382 (CRC Press, 2015).
Michalakis, S., Becirovic, E. & Biel, M. Retinal cyclic nucleotide-gated channels: from pathophysiology to therapy. Int. J. Mol. Sci. 19, 749 (2018).
pmcid: 5877610 doi: 10.3390/ijms19030749
Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310–313 (1985).
pubmed: 2578616 doi: 10.1038/313310a0
Nakamura, T. & Gold, G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325, 442–444 (1987).
pubmed: 3027574 doi: 10.1038/325442a0
Kaupp, U. B. et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762–766 (1989).
pubmed: 2481236 doi: 10.1038/342762a0
Dhallan, R. S., Yau, K. W., Schrader, K. A. & Reed, R. R. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347, 184−187 (1990).
Goulding, E. H., Tibbs, G. R., Liu, D. & Siegelbaum, S. A. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels. Nature 364, 61−64 (1993).
Li, M. et al. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542, 60–65 (2017).
pubmed: 28099415 pmcid: 5783306 doi: 10.1038/nature20819
Gordon, S. E. & Zagotta, W. N. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron 14, 177–183 (1995).
pubmed: 7530019 doi: 10.1016/0896-6273(95)90252-X
Gordon, S. E. & Zagotta, W. N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron 14, 857–864 (1995).
pubmed: 7536427 doi: 10.1016/0896-6273(95)90229-5
Brown, R. L., Snow, S. D. & Haley, T. L. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys. J. 75, 825–833 (1998).
pubmed: 9675183 pmcid: 1299756 doi: 10.1016/S0006-3495(98)77571-X
Zong, X., Zucker, H., Hofmann, F. & Biel, M. Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J. 17, 353−362 (1998).
Zhou, L., Olivier, N. B., Yao, H., Young, E. C. & Siegelbaum, S. A. A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization. Neuron 44, 823−834 (2004).
Paoletti, P., Young, E. C. & Siegelbaum, S. A. C-linker of cyclic nucleotide–gated channels controls coupling of ligand binding to channel gating. J. Gen. Physiol. 113, 17–34 (1999).
pubmed: 9874685 pmcid: 2222991 doi: 10.1085/jgp.113.1.17
Flynn, G. E. & Zagotta, W. N. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron 30, 689–698 (2001).
pubmed: 11430803 doi: 10.1016/S0896-6273(01)00324-5
Contreras, J. E. & Holmgren, M. Access of quaternary ammonium blockers to the internal pore of cyclic nucleotide-gated channels: implications for the location of the gate. J. Gen. Physiol. 127, 481−494 (2006).
Contreras, J. E., Srikumar, D. & Holmgren, M. Gating at the selectivity filter in cyclic nucleotide-gated channels. Proc. Natl Acad. Sci. USA 105, 3310−3314 (2008).
Sun, Z. P., Akabas, M. H., Goulding, E. H., Karlin, A. & Siegelbaum, S. A. Exposure of residues in the cyclic nucleotide–gated channel pore: P region structure and function in gating. Neuron 16, 141–149 (1996).
pubmed: 8562078 doi: 10.1016/S0896-6273(00)80031-8
Becchetti, A. & Roncaglia, P. Cyclic nucleotide-gated channels: intra- and extracellular accessibility to Cd
James, Z. M. & Zagotta, W. N. Structural insights into the mechanisms of CNBD channel function. J. Gen. Physiol. 150, 225−244 (2018).
Flynn, G. E., Johnson, J. P., Jr. & Zagotta, W. N. Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore. Nat Rev Neurosci. 2, 643−651 (2001).
Cukkemane, A., Seifert, R. & Kaupp, U. B. Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem. Sci. 36, 55−64 (2011).
Clayton, G. M., Altieri, S., Heginbotham, L., Unger, V. M. & Morais-Cabral, J. H. Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc. Natl Acad. Sci. USA 105, 1511−1515 (2008).
James, Z. M. et al. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. Proc. Natl Acad. Sci. USA 114, 4430–4435 (2017).
pubmed: 28396445 doi: 10.1073/pnas.1700248114 pmcid: 5410850
Rheinberger, J., Gao, X., Schmidpeter, P. A. & Nimigean, C. M. Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures. Elife 7, e39775 (2018).
pubmed: 30028291 pmcid: 6093708 doi: 10.7554/eLife.39775
Komatsu, H., Mori, I., Rhee, J. S., Akaike, N. & Ohshima, Y. Mutations in a cyclic nucleotide–gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17, 707–718 (1996).
pubmed: 8893027 doi: 10.1016/S0896-6273(00)80202-0
Komatsu, H. et al. Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells. Brain Res. 821, 160–168 (1999).
pubmed: 10064800 doi: 10.1016/S0006-8993(99)01111-7
Klesse, G., Rao, S., Sansom, M. S. P. & Tucker, S. J. CHAP: a versatile tool for the structural and functional annotation of ion channel pores. J. Mol. Biol. 431, 3353–3365 (2019).
pubmed: 31220459 pmcid: 6699600 doi: 10.1016/j.jmb.2019.06.003
Rao, S., Klesse, G., Stansfeld, P. J., Tucker, S. J. & Sansom, M. S. P. A heuristic derived from analysis of the ion channel structural proteome permits the rapid identification of hydrophobic gates. Proc. Natl Acad. Sci. USA 116, 13989−13995 (2019).
Trick, J. L. et al. Functional annotation of ion channel structures by molecular simulation. Structure 24, 2207–2216 (2016).
pubmed: 27866853 pmcid: 5145807 doi: 10.1016/j.str.2016.10.005
Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K
pubmed: 9525859 doi: 10.1126/science.280.5360.69
Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113−118 (2013).
Lee, C. H. & MacKinnon, R. Structures of the human HCN1 hyperpolarization-activated channel. Cell 168, 111–120.e11 (2017).
pubmed: 28086084 pmcid: 5496774 doi: 10.1016/j.cell.2016.12.023
Flynn, G. E. & Zagotta, W. N. A cysteine scan of the inner vestibule of cyclic nucleotide-gated channels reveals architecture and rearrangement of the pore. J. Gen. Physiol. 121, 563−582 (2003).
Zagotta, W. N. et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425, 200–205 (2003).
pubmed: 12968185 doi: 10.1038/nature01922
Saponaro, A. et al. Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function. Proc. Natl Acad. Sci. USA 111, 14577–14582 (2014).
pubmed: 25197093 doi: 10.1073/pnas.1410389111 pmcid: 4210022
Xu, X., Vysotskaya, Z. V., Liu, Q. & Zhou, L. Structural basis for the cAMP-dependent gating in the human HCN4 channel. J. Biol. Chem. 285, 37082−37091 (2010).
Lolicato, M. et al. Tetramerization dynamics of C-terminal domain underlies isoform-specific cAMP gating in hyperpolarization-activated cyclic nucleotide-gated channels. J. Biol. Chem. 286, 44811–44820 (2011).
pubmed: 22006928 pmcid: 3247997 doi: 10.1074/jbc.M111.297606
Taraska, J. W., Puljung, M. C., Olivier, N. B., Flynn, G. E. & Zagotta, W. N. Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat. Methods 6, 532−537 (2009).
Altieri, S. L. et al. Structural and energetic analysis of activation by a cyclic nucleotide binding domain. J. Mol. Biol. 381, 655–669 (2008).
pubmed: 18619611 pmcid: 2555981 doi: 10.1016/j.jmb.2008.06.011
Goldschen-Ohm, M. P. et al. Structure and dynamics underlying elementary ligand binding events in human pacemaking channels. Elife 5, e20797 (2016).
pubmed: 27858593 pmcid: 5115869 doi: 10.7554/eLife.20797
Kowal, J. et al. Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat. Commun. 5, 3106 (2014).
pubmed: 24469021 doi: 10.1038/ncomms4106
Marchesi, A. et al. An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel. Nat. Commun. 9, 3978 (2018).
pubmed: 30266906 pmcid: 6162275 doi: 10.1038/s41467-018-06414-8
Kim, D. M. & Nimigean, C. M. Voltage-gated potassium channels: a structural examination of selectivity and gating. Cold Spring Harb. Perspect. Biol. 8, a029231 (2016).
pubmed: 27141052 pmcid: 4852806 doi: 10.1101/cshperspect.a029231
Zhou, X. et al. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat. Struct. Mol. Biol. 24, 1146–1154 (2017).
pubmed: 29106414 pmcid: 5747366 doi: 10.1038/nsmb.3502
Fodor, A. A., Black, K. D. & Zagotta, W. N. Tetracaine reports a conformational change in the pore of cyclic nucleotide-gated channels. J. Gen. Physiol. 110, 591–600 (1997).
pubmed: 9348330 pmcid: 2229390 doi: 10.1085/jgp.110.5.591
Fodor, A. A., Gordon, S. E. & Zagotta, W. N. Mechanism of tetracaine block of cyclic nucleotide-gated channels. J. Gen. Physiol. 109, 3–14 (1997).
pubmed: 8997661 pmcid: 2217055 doi: 10.1085/jgp.109.1.3
Craven, K. B., Olivier, N. B. & Zagotta, W. N. C-terminal movement during gating in cyclic nucleotide-modulated channels. J. Biol. Chem. 283, 14728–14738 (2008).
pubmed: 18367452 pmcid: 2386932 doi: 10.1074/jbc.M710463200
Craven, K. B. & Zagotta, W. N. Salt bridges and gating in the COOH-terminal region of HCN2 and CNGA1 channels. J. Gen. Physiol. 124, 663–677 (2004).
pubmed: 15572346 pmcid: 2234033 doi: 10.1085/jgp.200409178
Mazzolini, M. et al. The gating mechanism in cyclic nucleotide-gated ion channels. Sci. Reports 8, 45 (2018).
Martinez-Francois, J. R., Xu, Y. & Lu, Z. Mutations reveal voltage gating of CNGA1 channels in saturating cGMP. J. Gen. Physiol. 134, 151−164 (2009).
Mazzolini, M., Anselmi, C. & Torre, V. The analysis of desensitizing CNGA1 channels reveals molecular interactions essential for normal gating. J. Gen. Physiol. 133, 375−386 (2009).
Crary, J. I., Dean, D. M., Nguitragool, W., Kurshan, P. T. & Zimmerman, A. L. Mechanism of inhibition of cyclic nucleotide–gated ion channels by diacylglycerol. J. Gen. Physiol. 116, 755–768 (2000).
pubmed: 11099345 pmcid: 2231817 doi: 10.1085/jgp.116.6.755
Womack, K. B. et al. Do phosphatidylinositides modulate vertebrate phototransduction? J. Neurosci. 20, 2792–2799 (2000).
pubmed: 10751430 pmcid: 6772201 doi: 10.1523/JNEUROSCI.20-08-02792.2000
Bright, S. R., Rich, E. D. & Varnum, M. D. Regulation of human cone cyclic nucleotide-gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3,4,5-trisphosphate. Mol. Pharmacol. 71, 176−183 (2007).
Spehr, M., Wetzel, C. H., Hatt, H. & Ache, B. W. 3-phosphoinositides modulate cyclic nucleotide signaling in olfactory receptor neurons. Neuron 33, 731–739 (2002).
pubmed: 11879650 doi: 10.1016/S0896-6273(02)00610-4
Zhainazarov, A. B., Spehr, M., Wetzel, C. H., Hatt, H. & Ache, B. W. Modulation of the olfactory CNG channel by Ptdlns(3,4,5)P
pubmed: 15635812 doi: 10.1007/s00232-004-0707-4
Gordon, S. E., Downing-Park, J., Tam, B. & Zimmerman, A. L. Diacylglycerol analogs inhibit the rod cGMP-gated channel by a phosphorylation-independent mechanism. Biophys. J. 69, 409−417 (1995).
Dai, G., Peng, C., Liu, C. & Varnum, M. D. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides. J. Gen. Physiol. 141, 413−430 (2013).
Ritchie, T. K. et al. Chapter 11 — Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231 (2009).
pubmed: 19903557 pmcid: 4196316 doi: 10.1016/S0076-6879(09)64011-8
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).
pubmed: 15890530 doi: 10.1016/j.jsb.2005.03.010
Feng, X. et al. A fast and effective microfluidic spraying-plunging method for high-resolution single-particle cryo-EM. Structure 25, 663–670.e3 (2017).
pubmed: 28286002 pmcid: 5382802 doi: 10.1016/j.str.2017.02.005
Rice, W. J. et al. Routine determination of ice thickness for cryo-EM grids. J. Struct. Biol. 204, 38–44 (2018).
pubmed: 29981485 pmcid: 6119488 doi: 10.1016/j.jsb.2018.06.007
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
pubmed: 30412051 pmcid: 6250425 doi: 10.7554/eLife.42166
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta. Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta. Crystallogr. D Struct. Biol. 74, 531–544 (2018).
pubmed: 29872004 pmcid: 6096492 doi: 10.1107/S2059798318006551
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta. Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).
pubmed: 24675956 pmcid: 4046073 doi: 10.1126/science.1249410
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta. Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
pubmed: 18351591 doi: 10.1002/jcc.20945
Quick, M. & Javitch, J. A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl Acad. Sci. USA 104, 3603–3608 (2007).
pubmed: 17360689 doi: 10.1073/pnas.0609573104 pmcid: 1805550

Auteurs

Xiangdong Zheng (X)

Department of Biological Sciences, Columbia University, New York, NY, USA.

Ziao Fu (Z)

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Deyuan Su (D)

Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming, China.

Yuebin Zhang (Y)

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

Minghui Li (M)

Department of Biological Sciences, Columbia University, New York, NY, USA.
HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.

Yaping Pan (Y)

Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.

Huan Li (H)

Department of Biological Sciences, Columbia University, New York, NY, USA.

Shufang Li (S)

Department of Biological Sciences, Columbia University, New York, NY, USA.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Robert A Grassucci (RA)

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Zhenning Ren (Z)

Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.

Zhengshan Hu (Z)

Department of Biological Sciences, Columbia University, New York, NY, USA.

Xueming Li (X)

Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.

Ming Zhou (M)

Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.

Guohui Li (G)

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. ghli@dicp.ac.cn.

Joachim Frank (J)

Department of Biological Sciences, Columbia University, New York, NY, USA. jf2192@cumc.columbia.edu.
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. jf2192@cumc.columbia.edu.

Jian Yang (J)

Department of Biological Sciences, Columbia University, New York, NY, USA. jy160@columbia.edu.
Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Chinese Academy of Sciences, Kunming, China. jy160@columbia.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH