Polarized light through polycrystalline vaterite helicoids.
Journal
Chemical communications (Cambridge, England)
ISSN: 1364-548X
Titre abrégé: Chem Commun (Camb)
Pays: England
ID NLM: 9610838
Informations de publication
Date de publication:
02 Jul 2020
02 Jul 2020
Historique:
pubmed:
3
6
2020
medline:
4
2
2021
entrez:
3
6
2020
Statut:
ppublish
Résumé
Vaterite helicoids [W. Jiang et al., Nat. Commun., 2017, 8, 15066] are chiral, polycrystalline suprastructures grown in the presence of the amino acids, aspartic (Asp) or glutamic (Glu) acid, that are abundant in proteins regulating biomineralization. These complex objects are composed of hexagonal vaterite nanocrystals assembled as curved-edge platelets that form chiral ensembles. The sense stacked platelets is correlated with the stereochemistry of the amino acid additive: l-Asp gives counterclockwise architectures while d-Asp gives the clockwise enantiomorphs. As new layers stack, platelets become progressively inclined with respect to the substrate suface. The growth and structure of vaterite helicoids was originally evidenced by electron microscopy and atomic force microscopy. Here, we develop an optical model for describing polarized light transmission through helicoids as measured by Mueller matrix polarimetry. The close agreement between experimental measurements and simulation confirms that the propellor-like organization of inclined platelets creates optically active structures determined by growth additive stereochemistry. The microscopy employed demonstrates the information that can be obtained by complete polarimetry using a camera as a light detector, a technique that could be applied profitably to all manner of complex structures organized from anisotropic particles.
Substances chimiques
Aspartic Acid
30KYC7MIAI
Glutamic Acid
3KX376GY7L
Calcium Carbonate
H0G9379FGK
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM