Structural and functional changes of gut microbiota in ovariectomized rats and their correlations with altered bone mass.
Animals
Biomechanical Phenomena
Bone Development
/ physiology
Bone and Bones
/ metabolism
Disease Models, Animal
Feces
/ microbiology
Female
Gastrointestinal Microbiome
/ physiology
Humans
Osteoporosis, Postmenopausal
/ metabolism
Ovariectomy
RNA, Ribosomal, 16S
/ analysis
Rats
Rats, Sprague-Dawley
Ruminococcus
/ isolation & purification
16S rRNA sequencing
gut microbiota
metagenomics
ovariectomized rats
steroid deficiency-induced osteoporosis
Journal
Aging
ISSN: 1945-4589
Titre abrégé: Aging (Albany NY)
Pays: United States
ID NLM: 101508617
Informations de publication
Date de publication:
02 06 2020
02 06 2020
Historique:
received:
12
12
2019
accepted:
27
04
2020
pubmed:
3
6
2020
medline:
25
2
2021
entrez:
3
6
2020
Statut:
ppublish
Résumé
As a critical factor involved in the maintenance of physiological homeostasis, the gut microbiota (GM) reportedly plays a key role in bone development. To date, the association between the GM and steroid deficiency-induced osteoporosis remains poorly understood. Forty female Sprague Dawley rats were divided into an ovariectomy (OVX) or control group. We performed 16S rRNA and metagenome sequencing, to compare diversity, taxonomic differences, and functional genes. The GM composition did not change in the control group and the number of operational taxonomic units increased significantly following ovariectomy. Alpha diversity, determined by ACE estimator, CHAO estimator, the Shannon index, and the Simpson index showed an increasing trend after ovariectomy. Samples in the OVX group were well clustered both pre- and post-ovariectomy, as demonstrated by principal coordinate 1 (PC1) and PC2. Functional genes of GM, including those involved in synthesis and metabolism of carbohydrates and nucleotides, microbial structure, and heme, as well as hemin uptake and utilization, increased at the early stage of osteoporosis. We observed that Ruminococcus flavefaciens exhibited the greatest variation in abundance among the GM and this was also associated with osteoclastic indicators and the estrobolome. Specific changes in fecal microbiota are associated with the pathogenesis of steroid deficiency-induced osteoporosis.
Identifiants
pubmed: 32484785
pii: 103290
doi: 10.18632/aging.103290
pmc: PMC7346027
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10736-10753Références
Maturitas. 2009 Feb 20;62(2):105-8
pubmed: 19135323
Hypertension. 2015 Jun;65(6):1331-40
pubmed: 25870193
Elife. 2013 Nov 05;2:e01202
pubmed: 24192039
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Gut Microbes. 2016 May 3;7(3):189-200
pubmed: 26963409
Anaerobe. 2019 Oct;59:14-18
pubmed: 31075311
Trends Endocrinol Metab. 2016 Nov;27(11):752-755
pubmed: 27553057
Bioinformatics. 2012 Sep 1;28(17):2223-30
pubmed: 22796954
J Lipid Res. 2013 Sep;54(9):2325-40
pubmed: 23821742
J Bone Miner Res. 2012 Jun;27(6):1357-67
pubmed: 22407806
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Cell Metab. 2011 May 4;13(5):517-26
pubmed: 21531334
J Clin Invest. 2016 Jun 1;126(6):2049-63
pubmed: 27111232
Ann Intern Med. 2017 Aug 1;167(3):ITC17-ITC32
pubmed: 28761958
Cancer Immunol Res. 2017 Apr;5(4):292-299
pubmed: 28254786
PeerJ. 2017 Jun 15;5:e3450
pubmed: 28630804
Clin Nutr. 2010 Jun;29(3):365-9
pubmed: 19897285
Trends Endocrinol Metab. 2015 Feb;26(2):69-74
pubmed: 25497348
Metallomics. 2017 Sep 20;9(9):1193-1203
pubmed: 28795723
Curr Osteoporos Rep. 2015 Apr;13(2):125-30
pubmed: 25616772
J Bone Miner Res. 2016 Sep;31(9):1638-46
pubmed: 27317164
Biol Chem. 2015 Apr;396(4):339-47
pubmed: 25503465
Nat Rev Gastroenterol Hepatol. 2010 Dec;7(12):691-701
pubmed: 21045794
Science. 2012 Jun 8;336(6086):1262-7
pubmed: 22674330
Immunology. 2017 Aug;151(4):363-374
pubmed: 28542929
Environ Microbiol. 2005 Jul;7(7):933-46
pubmed: 15946290
Appl Environ Microbiol. 2007 Aug;73(16):5261-7
pubmed: 17586664
Nature. 2013 Dec 19;504(7480):451-5
pubmed: 24226773
Osteoporos Int. 2013 Jan;24(1):23-57
pubmed: 23079689
J Exp Med. 2018 Mar 5;215(3):785-799
pubmed: 29382696
Best Pract Res Clin Gastroenterol. 2013 Feb;27(1):73-83
pubmed: 23768554
Arch Oral Biol. 2016 Feb;62:70-9
pubmed: 26655950
Curr Opin Cardiol. 2017 Nov;32(6):761-766
pubmed: 29023288
J Clin Invest. 2016 Jun 1;126(6):2045-8
pubmed: 27111233
Bone Res. 2017 Oct 04;5:17046
pubmed: 28983411
Bone. 1995 Nov;17(5 Suppl):505S-511S
pubmed: 8573428
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
PLoS One. 2011;6(12):e27310
pubmed: 22194782
Anaerobe. 2016 Jun;39:91-6
pubmed: 26996070
Bone. 2009 May;44(5):893-8
pubmed: 19442605
J Periodontol. 2009 Aug;80(8):1355-64
pubmed: 19656037
J Bone Miner Res. 2017 Jul;32(7):1455-1468
pubmed: 28337794
Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5
pubmed: 16033867
Cancer Discov. 2016 Jun;6(6):OF14
pubmed: 27080335
Cell Host Microbe. 2011 Oct 20;10(4):324-35
pubmed: 22018233
J Nutr. 2009 Jan;139(1):20-5
pubmed: 19056662
J Dent Res. 2017 Mar;96(3):292-299
pubmed: 27827319
Nature. 2012 Aug 30;488(7413):621-6
pubmed: 22914093
Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5
pubmed: 19004872
EMBO Mol Med. 2015 Mar 30;7(6):695-713
pubmed: 25825391