Interfacial Engineering of Pickering Emulsion Co-Stabilized by Zein Nanoparticles and Tween 20: Effects of the Particle Size on the Interfacial Concentration of Gallic Acid and the Oxidative Stability.
Pickering emulsion
interfacial concentration of phenolic antioxidant
oxidative stability
particle size
zein nanoparticles
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
30 May 2020
30 May 2020
Historique:
received:
29
03
2020
revised:
17
05
2020
accepted:
28
05
2020
entrez:
4
6
2020
pubmed:
4
6
2020
medline:
4
6
2020
Statut:
epublish
Résumé
Lipid oxidation is still one of the major food-safety issues associated with the emulsion-based food systems. Engineering the interfacial region is an effective way to improve the oxidative stability of emulsion. Herein, a novel Pickering emulsion with strong oxidative stability was prepared by using zein nanoparticles and Tween 20 as stabilizers (ZPE). The modulation effects of the particle size on the distribution of gallic acid (GA) and the oxidative stability of ZPE were investigated. In the absence of GA, Pickering emulsions stabilized with different sizes of zein nanoparticles showed similar oxidative stability, and the physical barrier effect took the dominant role in retarding lipid oxidation. Moreover, in the presence of GA, ZPE stabilized by zein nanoparticles with the averaged particle size of 130 nm performed stronger oxidation than those stabilized by zein nanoparticles of 70 and 220 nm. Our study revealed that the interfacial concentration of GA (GA
Identifiants
pubmed: 32486322
pii: nano10061068
doi: 10.3390/nano10061068
pmc: PMC7352959
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : the National Natural Science Foundation of China
ID : No.31701556
Organisme : the Program for Guangdong Introducing Innovative and Enterpreneurial Teams
ID : 2019ZT08N291
Références
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Mar 15;229:117937
pubmed: 31865099
J Colloid Interface Sci. 2012 Mar 15;370(1):73-9
pubmed: 22284574
J Agric Food Chem. 2019 Mar 20;67(11):3266-3274
pubmed: 30811186
J Agric Food Chem. 2018 Jan 10;66(1):20-35
pubmed: 29227097
Food Res Int. 2018 Oct;112:192-198
pubmed: 30131128
Food Chem. 2017 Nov 1;234:339-347
pubmed: 28551245
J Agric Food Chem. 2018 May 2;66(17):4458-4468
pubmed: 29648824
Nanomaterials (Basel). 2019 Feb 14;9(2):
pubmed: 30769791
Food Chem. 2020 Jan 15;303:125391
pubmed: 31466030
Int J Nanomedicine. 2017 Nov 10;12:8197-8209
pubmed: 29184408
J Agric Food Chem. 2013 Jul 3;61(26):6533-43
pubmed: 23701266
J Colloid Interface Sci. 2019 Nov 1;555:224-233
pubmed: 31382141
J Agric Food Chem. 2016 Jun 29;64(25):5274-83
pubmed: 27157893
J Agric Food Chem. 2015 Dec 2;63(47):10263-70
pubmed: 26539628
Int J Biol Macromol. 2020 Jun 1;152:223-233
pubmed: 32068060
Annu Rev Food Sci Technol. 2017 Feb 28;8:391-411
pubmed: 28125349
Annu Rev Food Sci Technol. 2017 Feb 28;8:205-236
pubmed: 28125353
Food Res Int. 2019 Jun;120:352-363
pubmed: 31000249
Nanomaterials (Basel). 2019 Jul 16;9(7):
pubmed: 31315272
J Colloid Interface Sci. 2011 May 15;357(2):527-33
pubmed: 21388633
Nanomaterials (Basel). 2020 Feb 18;10(2):
pubmed: 32085639
Langmuir. 2004 Apr 13;20(8):3047-55
pubmed: 15875828
J Food Sci. 2019 Apr;84(4):818-831
pubmed: 30802954