Simulation Studies on Centrifugal MQL-CCA Method of Applying Coolant during Internal Cylindrical Grinding Process.

CAG CFD simulation MQL internal cylindrical grinding

Journal

Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929

Informations de publication

Date de publication:
31 May 2020
Historique:
received: 07 04 2020
revised: 28 05 2020
accepted: 28 05 2020
entrez: 4 6 2020
pubmed: 4 6 2020
medline: 4 6 2020
Statut: epublish

Résumé

This paper describes simulation studies regarding the application of the centrifugal minimum quantity lubrication (MQL) method simultaneously with the delivery of a compressed cooled air (CCA) stream in the internal cylindrical grinding process. The idea of a new hybrid cooling and lubrication method connecting centrifugal (through a grinding wheel) lubrication by MQL with a CCA stream is described. The methodology of computational fluid dynamics (CFD) simulation studies, as well as the results of numerical simulations, are presented in detail. The aim of the simulations was to determine the most favourable geometrical and kinematic parameters of the system in the context of air-oil aerosol and CCA flow, as well as heat exchange. In the simulation, the variables were the grinding arbor geometrical parameters, the angle of CCA supply line outlets, and the grinding wheel and workpiece peripheral speed. As a result of the simulation studies, the most favourable geometrical parameters were designated, determining the orientation of the ends of the two CCA supply line outlets before and after the grinding zone, the number of openings in the drilled-out grinding arbor, and the influence of the grinding speed on the parameters of the coolant flow and temperature of objects in the grinding zone. In addition, the results of simulation tests made it possible to visualise the velocity vectors of the two-phase coolant flow in a complex system of air-oil aerosol delivery centrifugally through an open structure of a very fast rotating porous layer (grinding wheel), with an additional supply of CCA using an external cold air gun (CAG).

Identifiants

pubmed: 32486352
pii: ma13112506
doi: 10.3390/ma13112506
pmc: PMC7321474
pii:
doi:

Types de publication

Journal Article

Langues

eng

Déclaration de conflit d'intérêts

The authors declare no conflict of interest.

Références

Materials (Basel). 2020 May 22;13(10):
pubmed: 32455876

Auteurs

Seweryn Kieraś (S)

Wartsila Poland Sp. z o.o., Łużycka 2, 81-537 Gdynia, Poland.

Marek Jakubowski (M)

Department of Food Industry Processes and Facilities, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland.

Krzysztof Nadolny (K)

Department of Production Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland.

Classifications MeSH