Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice.
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
01 06 2020
01 06 2020
Historique:
received:
16
01
2020
accepted:
14
05
2020
revised:
05
05
2020
entrez:
4
6
2020
pubmed:
4
6
2020
medline:
22
6
2021
Statut:
epublish
Résumé
Mitochondria play a critical role in bioenergetics, enabling stress adaptation, and therefore, are central in biological stress responses and stress-related complex psychopathologies. To investigate the effect of mitochondrial dysfunction on the stress response and the impact on various biological domains linked to the pathobiology of depression, a novel mouse model was created. These mice harbor a gene trap in the first intron of the Ndufs4 gene (Ndufs4
Identifiants
pubmed: 32488052
doi: 10.1038/s41398-020-0858-y
pii: 10.1038/s41398-020-0858-y
pmc: PMC7266820
doi:
Substances chimiques
Ndufs4 protein, mouse
0
Electron Transport Complex I
EC 7.1.1.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
176Références
Joëls, M. & Baram, T. Z. The neuro-symphony of stress. Nat. Rev. Neurosci. 10, 459 (2009).
pubmed: 19339973
pmcid: 2844123
Morava, E. & Kozicz, T. Mitochondria and the economy of stress (mal)adaptation. Neurosci. Biobehav. Rev. 37, 668–680 (2013).
pubmed: 23415702
Picard, M. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl Acad. Sci. USA 112, E6614–E6623 (2015).
pubmed: 26627253
Picard, M. & McEwen, B. S. Psychological stress and mitochondria: a systematic review. Psychosom. Med. 80, 141–153 (2018).
pubmed: 29389736
pmcid: 5901654
Rezin, G. T. et al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem. Int. 53, 395–400 (2008).
pubmed: 18940214
Gong, Y., Chai, Y., Ding, J. H., Sun, X. L. & Hu, G. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neurosci. Lett. 488, 76–80 (2011).
pubmed: 21070835
Madrigal, J. L. et al. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24, 420–429 (2001).
pubmed: 11182537
Kessler, R. C. The effects of stressful life events on depression. Annu. Rev. Psychol. 48, 191–214 (1997).
pubmed: 9046559
pmcid: 9046559
Liu, R. T. & Alloy, L. B. Stress generation in depression: a systematic review of the empirical literature and recommendations for future study. Clin. Psychol. Rev. 30, 582–593 (2010).
pubmed: 20478648
pmcid: 3049314
Hammen, C. Stress and depression. Annu. Rev. Clin. Psychol. 1, 293–319 (2005).
pubmed: 17716090
Hroudova, J., Fisar, Z., Kitzlerova, E., Zverova, M. & Raboch, J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 13, 795–800 (2013).
pubmed: 23688905
Karabatsiakis, A. et al. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl. Psychiatry 4, e397 (2014).
pubmed: 26126180
pmcid: 4080325
Koene, S. et al. Major depression in adolescent children consecutively diagnosed with mitochondrial disorder. J. Affect. Disord. 114, 327–332 (2009).
pubmed: 18692904
Morava, E. et al. Depressive behaviour in children diagnosed with a mitochondrial disorder. Mitochondrion 10, 528–533 (2010).
pubmed: 20573558
Fattal, O., Link, J., Quinn, K., Cohen, B. H. & Franco, K. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr. 12, 429–438 (2007).
pubmed: 17545953
Torraco, A., Peralta, S., Iommarini, L. & Diaz, F. Mitochondrial Diseases Part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion 21, 76–91 (2015).
pubmed: 25660179
Antonicka, H. et al. Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J. Biol. Chem. 278, 43081–43088 (2003).
pubmed: 12941961
von Kleist-Retzow, J.-C. et al. A high rate (20%–30%) of parental consanguinity in cytochrome-oxidase deficiency. Am. J. Hum. Genet. 63, 428–435 (1998).
Petruzzella, V. & Papa, S. Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: the NDUFS4 gene. Gene 286, 149–154 (2002).
pubmed: 11943471
Loeffen, J. L. et al. Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum. Mutat. 15, 123–134 (2000).
pubmed: 10649489
Budde, S. M., van den Heuvel, L. P. & Smeitink, J. A. The human complex I NDUFS4 subunit: from gene structure to function and pathology. Mitochondrion 2, 109–115 (2002).
pubmed: 16120313
Kruse, S. E. et al. Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab. 7, 312–320 (2008).
pubmed: 18396137
pmcid: 2593686
Koene, S., Willems, P. H., Roestenberg, P., Koopman, W. J. & Smeitink, J. A. Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. J. Inherit. Metab. Dis. 34, 293–307 (2011).
pubmed: 20107904
Ortigoza-Escobar, J. D. et al. Ndufs4 related Leigh syndrome: a case report and review of the literature. Mitochondrion 28, 73–78 (2016).
pubmed: 27079373
Skarnes, W. C. et al. A public gene trap resource for mouse functional genomics. Nat. Genet. 36, 543 (2004).
pubmed: 15167922
pmcid: 2716026
Nord, A. S. et al. The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res. 34, D642–D648 (2006).
pubmed: 16381950
Antoniuk, S., Bijata, M., Ponimaskin, E. & Wlodarczyk, J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci. Biobehav. Rev. 99, 101–116 (2019).
pubmed: 30529362
Willner, P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress 6, 78–93 (2017).
Koene, S. et al. Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J. Inherit. Metab. Dis. 35, 737–747 (2012).
pubmed: 22644603
pmcid: 3432203
Whittaker, R. G. et al. Prevalence and progression of diabetes in mitochondrial disease. Diabetologia 50, 2085–2089 (2007).
pubmed: 17653689
Schaefer, A. M., Walker, M., Turnbull, D. M. & Taylor, R. W. Endocrine disorders in mitochondrial disease. Mol. Cell. Endocrinol. 379, 2–11 (2013).
pubmed: 23769710
pmcid: 3820028
Kessler, R. C. et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289, 3095–3105 (2003).
pubmed: 12813115
pmcid: 12813115
Hollis, F. et al. Mitochondrial function in the brain links anxiety with social subordination. Proc. Natl Acad. Sci. USA 112, 15486–15491 (2015).
pubmed: 26621716
Einat, H., Yuan, P. & Manji, H. K. Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene: further support for the involvement of mitochondrial function in anxiety disorders. Behav. Brain Res. 165, 172–180 (2005).
pubmed: 16095731
Hovatta, I., Juhila, J. & Donner, J. Oxidative stress in anxiety and comorbid disorders. Neurosci. Res. 68, 261–275 (2010).
pubmed: 20804792
Willner, P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52, 90–110 (2005).
Mutlu, O., Ulak, G., Laugeray, A. & Belzung, C. Effects of neuronal and inducible NOS inhibitor 1-[2-(trifluoromethyl) phenyl] imidazole (TRIM) in unpredictable chronic mild stress procedure in mice. Pharmacol. Biochem. Behav. 92, 82–87 (2009).
pubmed: 19022280
Franceschelli, A., Sens, J., Herchick, S., Thelen, C. & Pitychoutis, P. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naive and “depressed” mice exposed to chronic mild stress. Neuroscience 290, 49–60 (2015).
pubmed: 25595985
Opendak, M. & Gould, E. Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn. Sci. 19, 151–161 (2015).
pubmed: 25715908
Khacho, M. et al. Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19, 232–247 (2016).
pubmed: 27237737
Garcia-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A. & Alvarez-Buylla, A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J. Neurobiol. 36, 234–248 (1998).
pubmed: 9712307
van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).
pubmed: 11875571
Dowlati, Y. et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457 (2010).
pubmed: 20015486
Farooq, R. K. et al. Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation? Behav. Brain Res. 231, 130–137 (2012).
pubmed: 22465167
Esterhuizen, K., Van der Westhuizen, F. H. & Louw, R. Metabolomics of mitochondrial disease. Mitochondrion 35, 97–110 (2017).
pubmed: 28576558
Legault, J. T. et al. A metabolic signature of mitochondrial dysfunction revealed through a monogenic form of Leigh syndrome. Cell Rep. 13, 981–989 (2015).
Terburgh, K., Lindeque, Z., Mason, S., van der Westhuizen, F. & Louw, R. Metabolomics of Ndufs4−/− skeletal muscle: adaptive mechanisms converge at the ubiquinone-cycle. Biochim. et. Biophys. Acta 1865, 98–106 (2019).
Boenzi, S. & Diodato, D. Biomarkers for mitochondrial energy metabolism diseases. Essays Biochem. 62, 443–454 (2018).
pubmed: 29980631
Li, Z. Y. et al. Study of plasma metabolic profiling and biomarkers of chronic unpredictable mild stress rats based on gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 24, 3539–3546 (2010).
pubmed: 21080506
Zhao, J. et al. Metabolomic identification of biochemical changes induced by fluoxetine and imipramine in a chronic mild stress mouse model of depression. Sci. Rep. 5, 8890 (2015).
pubmed: 4352870
pmcid: 4352870
Shao, W.-h et al. Combined metabolomics and proteomics analysis of major depression in an animal model: perturbed energy metabolism in the chronic mild stressed rat cerebellum. OMICS 19, 383–392 (2015).
pubmed: 26134254
pmcid: 4505772
Witters, P. et al. Revisiting mitochondrial diagnostic criteria in the new era of genomics. Genet. Med. 20, 444 (2018).
pubmed: 29261183
Lener, M. S. et al. Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol. Psychiatry 81, 886–897 (2017).
pubmed: 27449797
Duman, R. S., Sanacora, G. & Krystal, J. H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 102, 75–90 (2019).
pubmed: 30946828
pmcid: 30946828
Pehrson, A. L. & Sanchez, C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Devel. Ther. 9, 603 (2015).
pubmed: 25653499
pmcid: 4307650
Cassol, E. et al. Altered monoamine and acylcarnitine metabolites in HIV-positive and HIV-negative subjects with depression. J. Acquired Immun. Defic. Syndrome. 69, 18 (2015).
Alam, M. T. et al. Skeletal muscle mitochondria of NDUFS4−/− mice display normal maximal pyruvate oxidation and ATP production. Biochim. et. Biophys. Acta. 1847, 526–533 (2015).
Valsecchi, F. et al. Metabolic consequences of NDUFS4 gene deletion in immortalized mouse embryonic fibroblasts. Biochim. Biophys. Acta 1817, 1925–1936 (2012).
pubmed: 22430089
Manjeri, G. R. et al. Increased mitochondrial ATP production capacity in brain of healthy mice and a mouse model of isolated complex I deficiency after isoflurane anesthesia. J. Inherit. Metab. Dis. 39, 59–65 (2016).
pubmed: 26310962
Distelmaier, F. et al. Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-α. Biochim. et. Biophys. Acta 1852, 529–540 (2015).
Pei, L. & Wallace, D. C. Mitochondrial etiology of neuropsychiatric disorders. Biol. Psychiatry 83, 722–730 (2018).
pubmed: 29290371
Campbell, S. & Macqueen, G. The role of the hippocampus in the pathophysiology of major depression. J. Psychiatry Neurosci. 29, 417–426 (2004).
pubmed: 15644983
pmcid: 524959
Garcia-Sevilla, L. Extraversion and neuroticism in rats. Pers. Individ. Dif. 5, 511–532 (1984).
Gururajan, A., Reif, A., Cryan, J. F. & Slattery, D. A. The future of rodent models in depression research. Nat. Rev. Neurosci. 20, 1–16 (2019).
Pare, W. P. Relationship of various behaviors in the open-field test of emotionality. Psychol. Rep. 14, 19–22 (1964).
Arr zola, M. S. et al. Mitochondria in developmental and adult neurogenesis. Neurotox. Res. 36, 1–11 (2018).
Ekdahl, C., Kokaia, Z. & Lindvall, O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158, 1021–1029 (2009).
pubmed: 18662748
Levone, B. R., Cryan, J. F. & O’Leary, O. F. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol. Stress 1, 147–155 (2015).
pubmed: 27589664
Touma, C. et al. Mice selected for high versus low stress reactivity: a new animal model for affective disorders. Psychoneuroendocrinology 33, 839–862 (2008).
pubmed: 18502051
Mudd, S. H. et al. Two patients with hepatic mtDNA depletion syndromes and marked elevations of S-adenosylmethionine and methionine. Mol. Genet. Metab. 105, 228–236 (2012).
pubmed: 22137549
Ost, M. et al. Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J. 29, 1314–1328 (2014).
pubmed: 25491309
Nikkanen, J. et al. Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism. Cell Metab. 23, 635–648 (2016).
pubmed: 26924217
Buzkova, J. et al. Metabolomes of mitochondrial diseases and inclusion body myositis patients: treatment targets and biomarkers. EMBO Mol. Med. 10, e9091 (2018).
pubmed: 30373890
pmcid: 30373890
Cordero, M. I., Just, N., Poirier, G. L. & Sandi, C. Effects of paternal and peripubertal stress on aggression, anxiety, and metabolic alterations in the lateral septum. Eur. Neuropsychopharmacol. 26, 357–367 (2016).
pubmed: 26776368
Larrieu, T. et al. Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress. Curr. Biol. 27, 2202–2210 (2017).
Kidd, P. M. Glutathione: systemic protectant against oxidative and free radical damage. Altern. Med. Rev. 2, 155–176 (1997).
Zieliński, Ł. P., Smith, A. C., Smith, A. G. & Robinson, A. J. Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling. Mitochondrion 31, 45–55 (2016).
pubmed: 27697518
pmcid: 5115619
Belleau, E. L., Treadway, M. T. & Pizzagalli, D. A. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol. Psychiatry 85, 443–453 (2018).
pubmed: 30470559
pmcid: 6380948
Filiou, M. D. & Sandi, C. Anxiety and brain mitochondria: a bidirectional crosstalk. Trends Neurosci. 42, 573–588 (2019).
pubmed: 31362874
Maes, M., Leonard, B., Myint, A., Kubera, M. & Verkerk, R. The new ‘5-HT’hypothesis of depression: cell-mediated immune activation induces indoleamine 2, 3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 702–721 (2011).
pubmed: 21185346
Moaddel, R. et al. Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects. Psychopharmacology 235, 3017–3030 (2018).
pubmed: 30116859
pmcid: 6193489
Oxenkrug, G. Serotonin–kynurenine hypothesis of depression: historical overview and recent developments. Curr. Drug Targets 14, 514–521 (2013).
pubmed: 23514379
pmcid: 3726541
Doolin, K. et al. Altered tryptophan catabolite concentrations in major depressive disorder and associated changes in hippocampal subfield volumes. Psychoneuroendocrinology 95, 8–17 (2018).
pubmed: 29787958
Russo, S. J., Murrough, J. W., Han, M.-H., Charney, D. S. & Nestler, E. J. Neurobiology of resilience. Nat. Neurosci. 15, 1475 (2012).
pubmed: 23064380
pmcid: 3580862
Miller, B. H., Schultz, L. E., Gulati, A., Su, A. I. & Pletcher, M. T. Phenotypic characterization of a genetically diverse panel of mice for behavioral despair and anxiety. PLoS ONE 5, e14458 (2010).
pubmed: 21206921
pmcid: 3012073
Mozhui, K. et al. Strain differences in stress responsivity are associated with divergent amygdala gene expression and glutamate-mediated neuronal excitability. J. Neurosci. 30, 5357–5367 (2010).
pubmed: 20392957
pmcid: 2866495
Yu, X. et al. Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Res. 19, 159–165 (2009).
pubmed: 19037013
pmcid: 2612955
Kato, T., Kunugi, H., Nanko, S. & Kato, N. Mitochondrial DNA polymorphisms in bipolar disorder. J. Affect. Disord. 62, 151–164 (2001).
pubmed: 11223103
Smith, A. L. & Corrow, D. J. Modifications to husbandry and housing conditions of laboratory rodents for improved well-being. ILAR J. 46, 140–147 (2005).
pubmed: 15775023
Mineur, Y. S., Prasol, D. J., Belzung, C. & Crusio, W. E. Agonistic behavior and unpredictable chronic mild stress in mice. Behav. Genet. 33, 513–519 (2003).
pubmed: 14574128
Pugh, P. L., Ahmed, S. F., Smith, M. I., Upton, N. & Hunter, A. J. A behavioural characterisation of the FVB/N mouse strain. Behav. Brain Res. 155, 283–289 (2004).
pubmed: 15364488