No association between FKBP5 gene methylation and acute and long-term cortisol output.
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
02 06 2020
02 06 2020
Historique:
received:
08
11
2019
accepted:
07
05
2020
revised:
08
04
2020
entrez:
4
6
2020
pubmed:
4
6
2020
medline:
22
6
2021
Statut:
epublish
Résumé
Prior studies identified DNA methylation (DNA
Identifiants
pubmed: 32488091
doi: 10.1038/s41398-020-0846-2
pii: 10.1038/s41398-020-0846-2
pmc: PMC7266811
doi:
Substances chimiques
Tacrolimus Binding Proteins
EC 5.2.1.-
tacrolimus binding protein 5
EC 5.2.1.8
Hydrocortisone
WI4X0X7BPJ
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
175Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : AL 1484/2-1
Pays : International
Références
Park, C. et al. Stress, epigenetics and depression: a systematic review. Neurosci. Biobehav. Rev. 102, 139–152 (2019).
doi: 10.1016/j.neubiorev.2019.04.010
Matosin, N., Halldorsdottir, T. & Binder, E. B. Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: the FKBP5 model. Biol. Psychiatry 83, 821–830 (2018).
doi: 10.1016/j.biopsych.2018.01.021
Zannas, A. S. & Binder, E. B. Gene-environment interactions at the FKBP5 locus: sensitive periods, mechanisms and pleiotropism. Genes Brain Behav. 13, 25–37 (2014).
doi: 10.1111/gbb.12104
Vermeer, H., Hendriks-Stegeman, B. I., van der Burg, B., van Buul-Offers, S. C. & Jansen, M. Glucocorticoid-induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability. J. Clin. Endocrinol. Metab. 88, 277–284 (2003).
doi: 10.1210/jc.2002-020354
Menke, A. et al. Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology 37, 1455–1464 (2012).
doi: 10.1038/npp.2011.331
Wochnik, G. M. et al. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J. Biol. Chem. 280, 4609–4616 (2005).
doi: 10.1074/jbc.M407498200
Binder, E. B. et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299, 1291–1305 (2008).
doi: 10.1001/jama.299.11.1291
Chrousos, G. P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5, 374–381 (2009).
doi: 10.1038/nrendo.2009.106
Rao, S. et al. Common variants in FKBP5 gene and major depressive disorder (MDD) susceptibility: a comprehensive meta-analysis. Sci. Rep. 6, 32687 (2016).
doi: 10.1038/srep32687
Wang, Q., Shelton, R. C. & Dwivedi, Y. Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder: A systematic review and meta-analysis. J. Affect. Disord. 225, 422–428 (2018).
doi: 10.1016/j.jad.2017.08.066
Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).
doi: 10.1038/s41593-018-0326-7
Halldorsdottir, T. & Binder, E. B. Gene x Environment interactions: from molecular mechanisms to behavior. Annu. Rev. Psychol. 68, 215–241 (2017).
doi: 10.1146/annurev-psych-010416-044053
Klengel, T. et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci. 16, 33–41 (2013).
doi: 10.1038/nn.3275
Yehuda, R. et al. Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol. Psychiatry 80, 372–380 (2016).
doi: 10.1016/j.biopsych.2015.08.005
Ramo-Fernandez, L. et al. The effects of childhood maltreatment on epigenetic regulation of stress-response associated genes: an intergenerational approach. Sci. Rep. 9, 983 (2019).
doi: 10.1038/s41598-018-36689-2
Tyrka, A. R. et al. Childhood maltreatment and methylation of FK506 binding protein 5 gene (FKBP5). Dev. Psychopathol. 27, 1637–1645 (2015).
doi: 10.1017/S0954579415000991
Non, A. L. et al. DNA methylation at stress-related genes is associated with exposure to early life institutionalization. Am. J. Phys. Anthropol. 161, 84–93 (2016).
doi: 10.1002/ajpa.23010
Santos, H. P. et al. Discrimination exposure and DNA methylation of stress-related genes in Latina mothers. Psychoneuroendocrinology 98, 131–138 (2018).
doi: 10.1016/j.psyneuen.2018.08.014
Parade, S. H. et al. Change in FK506 binding protein 5 (FKBP5) methylation over time among preschoolers with adversity. Dev. Psychopathol. 29, 1627–1634 (2017).
doi: 10.1017/S0954579417001286
Klinger-Konig, J. et al. Methylation of the FKBP5 gene in association with FKBP5 genotypes, childhood maltreatment and depression. Neuropsychopharmacology 44, 930–938 (2019).
doi: 10.1038/s41386-019-0319-6
Bustamante, A. C. et al. FKBP5 DNA methylation does not mediate the association between childhood maltreatment and depression symptom severity in the Detroit Neighborhood Health Study. J. Psychiatr. Res. 96, 39–48 (2018).
doi: 10.1016/j.jpsychires.2017.09.016
Farrell, C. et al. DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Res. 265, 341–348 (2018).
doi: 10.1016/j.psychres.2018.04.064
Lee, R. S. et al. DNA methylation and sex-specific expression of FKBP5 as correlates of one-month bedtime cortisol levels in healthy individuals. Psychoneuroendocrinology 97, 164–173 (2018).
doi: 10.1016/j.psyneuen.2018.07.003
Kang, J. I., Kim, T. Y., Choi, J. H., So, H. S. & Kim, S. J. Allele-specific DNA methylation level of FKBP5 is associated with post-traumatic stress disorder. Psychoneuroendocrinology 103, 1–7 (2019).
doi: 10.1016/j.psyneuen.2018.12.226
Stalder, T. et al. Stress-related and basic determinants of hair cortisol in humans: a meta-analysis. Psychoneuroendocrinology 77, 261–274 (2017).
doi: 10.1016/j.psyneuen.2016.12.017
Alexander, N. et al. DNA methylation profiles within the serotonin transporter gene moderate the association of 5-HTTLPR and cortisol stress reactivity. Transl. Psychiatry 4, e443 (2014).
doi: 10.1038/tp.2014.88
Klengel, T. & Binder, E. B. Epigenetics of stress-related psychiatric disorders and gene x environment interactions. Neuron 86, 1343–1357 (2015).
doi: 10.1016/j.neuron.2015.05.036
Margraf, J. Entstehung und Handhabung des Mini-DIPS (Springer, Berlin Heidelberg, 1994).
Kirschbaum, C., Pirke, K. M. & Hellhammer, D. H. The ‘Trier Social Stress Test’-a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993).
doi: 10.1159/000119004
Gao, W. et al. Quantitative analysis of steroid hormones in human hair using a column-switching LC-APCI-MS/MS assay. J. Chromatogr. B 928, 1–8 (2013).
doi: 10.1016/j.jchromb.2013.03.008
Bernstein, D. P. et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl. 27, 169–190 (2003).
doi: 10.1016/S0145-2134(02)00541-0
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G. & Hellhammer, D. H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 28, 916–931 (2003).
doi: 10.1016/S0306-4530(02)00108-7
Faul, F., Erdfelder, E., Buchner, A. & Lang, A. G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).
doi: 10.3758/BRM.41.4.1149
Resmini, E. et al. Reduced DNA methylation of FKBP5 in Cushing’s syndrome. Endocrine 54, 768–777 (2016).
doi: 10.1007/s12020-016-1083-6
Federenko, I. S., Nagamine, M., Hellhammer, D. H., Wadhwa, P. D. & Wust, S. The heritability of hypothalamus pituitary adrenal axis responses to psychosocial stress is context dependent. J. Clin. Endocrinol. Metab. 89, 6244–6250 (2004).
doi: 10.1210/jc.2004-0981
Stalder, T. et al. Intraindividual stability of hair cortisol concentrations. Psychoneuroendocrinology 37, 602–610 (2012).
doi: 10.1016/j.psyneuen.2011.08.007
Tylee, D. S., Kawaguchi, D. M. & Glatt, S. J. On the outside, looking in: a review and evaluation of the comparability of blood and brain “-omes”. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B, 595–603 (2013).
doi: 10.1002/ajmg.b.32150
Braun, P. et al. Genome-wide Dna methylation comparison between live human brain and peripheral tissues within individuals. Eur. Neuropsychopharmacol. 27, S506 (2017).
doi: 10.1016/j.euroneuro.2016.09.612
Ewald, E. R. et al. Alterations in DNA methylation of Fkbp5 as a determinant of blood-brain correlation of glucocorticoid exposure. Psychoneuroendocrinology 44, 112–122 (2014).
doi: 10.1016/j.psyneuen.2014.03.003