DNA-Guided Room-Temperature Synthesis of Single-Crystalline Gold Nanostructures on Graphdiyne Substrates.
Journal
ACS central science
ISSN: 2374-7943
Titre abrégé: ACS Cent Sci
Pays: United States
ID NLM: 101660035
Informations de publication
Date de publication:
27 May 2020
27 May 2020
Historique:
received:
22
02
2020
entrez:
4
6
2020
pubmed:
4
6
2020
medline:
4
6
2020
Statut:
ppublish
Résumé
Nobel metal nanoparticles with tunable morphologies are highly desirable due to their unique electronic, magnetic, optical, and/or catalytic features. Here we report the use of multilayered graphdyine (GD) as a substrate for the reductant-free, room-temperature synthesis of single-crystal Au nanostructures with tunable morphology. We find that the GD template rich in sp-carbon atoms possesses high affinity with Au atoms on the {111} facets, and that the intrinsic reductivity of GD facilitates the rapid growth of Au nanoplates. The introduction of single-stranded DNA strands further results in the synthesis of Au nanostructures with decreased anisotropy, i.e., polygons and flower-like nanoparticles. The DNA-guided tunable Au growth arises from the strong adsorption of DNA on the GD template that alters the uniformity of the interface, which provides a direct route to synthesize Au nanostructures with tailorable morphology and photonic properties.
Identifiants
pubmed: 32490194
doi: 10.1021/acscentsci.0c00223
pmc: PMC7256954
doi:
Types de publication
Journal Article
Langues
eng
Pagination
779-786Informations de copyright
Copyright © 2020 American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
J Am Chem Soc. 2012 Aug 22;134(33):13843-9
pubmed: 22849568
J Am Chem Soc. 2012 Jan 25;134(3):1699-709
pubmed: 22192084
Angew Chem Int Ed Engl. 2013 Dec 23;52(52):13910-40
pubmed: 24281910
Chem Commun (Camb). 2014 Aug 18;50(64):8889-91
pubmed: 24968811
Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561
pubmed: 10004490
Adv Mater. 2010 Jun 4;22(21):2338-42
pubmed: 20376858
Nano Lett. 2018 Mar 14;18(3):1875-1881
pubmed: 29406754
J Phys Chem B. 2005 Jul 28;109(29):13857-70
pubmed: 16852739
J Am Chem Soc. 2015 Apr 29;137(16):5260-3
pubmed: 25871853
J Am Chem Soc. 2008 Nov 5;130(44):14442-3
pubmed: 18850710
Adv Mater. 2017 May;29(18):
pubmed: 28295711
Acc Chem Res. 2014 Jun 17;47(6):1881-90
pubmed: 24871359
Angew Chem Int Ed Engl. 2012 Sep 3;51(36):9078-82
pubmed: 22865657
Phys Rev Lett. 2012 Feb 24;108(8):086804
pubmed: 22463556
Nat Mater. 2004 Jul;3(7):482-8
pubmed: 15208703
Phys Rev B Condens Matter. 1994 May 15;49(20):14251-14269
pubmed: 10010505
Angew Chem Int Ed Engl. 2014 Aug 4;53(32):8338-42
pubmed: 24954711
J Am Chem Soc. 2012 Sep 5;134(35):14542-54
pubmed: 22920241
J Am Chem Soc. 2013 Aug 28;135(34):12544-7
pubmed: 23941113
Phys Chem Chem Phys. 2017 Jul 26;19(29):19094-19102
pubmed: 28702606
J Am Chem Soc. 2019 Jul 31;141(30):11938-11946
pubmed: 31287680
Nat Commun. 2018 Feb 21;9(1):752
pubmed: 29467365
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
pubmed: 9984901
Angew Chem Int Ed Engl. 2004 Jul 12;43(28):3673-7
pubmed: 15248270
Nanoscale. 2012 May 21;4(10):3055-9
pubmed: 22508548
Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9382-9386
pubmed: 29885267
ACS Nano. 2014 Nov 25;8(11):11086-93
pubmed: 25265019
ACS Nano. 2012 Sep 25;6(9):8105-13
pubmed: 22900780
ACS Appl Mater Interfaces. 2019 Jan 23;11(3):2655-2661
pubmed: 29697952
Nat Commun. 2016 Sep 16;7:12873
pubmed: 27633935
Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979
pubmed: 9976227
Angew Chem Int Ed Engl. 2011 Dec 16;50(51):12245-8
pubmed: 22052613
Chem Commun (Camb). 2016 Apr 25;52(32):5629-32
pubmed: 27032989
Nano Lett. 2006 Apr;6(4):683-8
pubmed: 16608264
J Phys Chem B. 2005 Aug 18;109(32):15256-63
pubmed: 16852932
Chem Commun (Camb). 2010 May 21;46(19):3256-8
pubmed: 20442882
ACS Nano. 2012 Mar 27;6(3):2804-17
pubmed: 22376005
Nat Commun. 2018 Apr 13;9(1):1460
pubmed: 29654234
Angew Chem Int Ed Engl. 2006 Feb 6;45(7):1116-9
pubmed: 16389606