Low-Loss Organic Hyperbolic Materials in the Visible Spectral Range: A Joint Experimental and First-Principles Study.
low-loss materials
metamaterials
organic hyperbolic materials
poly(3-alkylthiophenes)
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
07
04
2020
pubmed:
4
6
2020
medline:
4
6
2020
entrez:
4
6
2020
Statut:
ppublish
Résumé
Hyperbolic media strengthen numerous attractive applications in optics such as super-resolution imaging, enhanced spontaneous emission, and nanoscale waveguiding. Natural hyperbolic materials exist at visible frequencies; however, implementations of these materials suffer substantial compromises resulting from the high loss in the currently available candidates. Here, the first experimental and theoretical investigation of regioregular poly(3-alkylthiophenes) (rr-P3ATs), a naturally low-loss organic hyperbolic material (OHM) in the visible frequency range, is shown. These hyperbolic properties arise from a highly ordered structure of layered electron-rich conjugated thiophene ring backbones separated by insulating alkyl side chains. The optical and electronic properties of the rr-P3AT can be tuned by controlling the degree of crystallinity and alkyl side chain length. First-principles calculations support the experimental observations, which result from the rr-P3AT's structural and optical anisotropy. Conveniently, rr-P3AT-based OHMs are facile to fabricate, flexible, and biocompatible, which may lead to tremendous new opportunities in a wide range of applications.
Identifiants
pubmed: 32490592
doi: 10.1002/adma.202002387
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2002387Subventions
Organisme : Gordon and Betty Moore Foundation
Organisme : National Science Foundation
ID : CBET1604216
Organisme : Korea Institute of Energy Research
ID : B9-2453
Organisme : KISTI
ID : KSC-2018-S1-0007
Informations de copyright
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, Science 2004, 305, 788.
J. B. Pendry, D. Schurig, D. R. Smith, Science 2006, 312, 1780.
J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal, Science 2004, 305, 847.
L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Prog. Quantum Electron. 2015, 40, 1.
Y. Guo, W. Newman, C. L. Cortes, Z. Jacob, Adv. OptoElectron. 2012, 2012, 452502.
A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Nat. Photonics 2013, 7, 948.
P. Shekhar, J. Atkinson, Z. Jacob, Nano Convergence 2014, 1, 14.
S. Chen, Z. Li, W. Liu, H. Cheng, J. Tian, Adv. Mater. 2019, 31, 1802458.
H. Li, W. Hao, X. Yin, S. Chen, L. Chen, Adv. Opt. Mater. 2019, 7, 1900493.
E. Narimanov, ACS Photonics 2016, 3, 1090.
Q. Ma, H. Hu, E. Huang, Z. Liu, Nanoscale 2017, 9, 18268.
Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Science 2007, 315, 1686.
J. Sun, M. I. Shalaev, N. M. Litchinitser, Nat. Commun. 2015, 6, 7201.
N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, A. V. Zayats, Opt. Express 2015, 23, 14329.
Z. Jacob, I. I. Smolyaninov, E. E. Narimanov, Appl. Phys. Lett. 2012, 100, 181105.
D. Lu, J. J. Kan, E. E. Fullerton, Z. Liu, Nat. Nanotechnol. 2014, 9, 48.
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, Science 2012, 336, 205.
Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, V. M. Shalaev, Appl. Phys. B 2010, 100, 215.
K. Korzeb, M. Gajc, D. A. Pawlak, Opt. Express 2015, 23, 25406.
B. Wood, J. B. Pendry, D. P. Tsai, Phys. Rev. B 2006, 74, 115116.
E. E. Narimanov, A. V. Kildishev, Nat. Photonics 2015, 9, 214.
T. Li, V. Nagal, D. H. Gracias, J. B. Khurgin, Opt. Express 2017, 25, 13588.
G. V. Naik, A. Boltasseva, Metamaterials 2011, 5, 1.
P. B. Johnson, R. W. Christy, Phys. Rev. B 1972, 6, 4370.
S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, D. N. Basov, Science 2014, 343, 1125.
T. Low, A. Chaves, J. D. Caldwell, A. Kumar, N. X. Fang, P. Avouris, T. F. Heinz, F. Guinea, L. Martin-Moreno, F. Koppens, Nat. Mater. 2017, 16, 182.
M. N. Gjerding, R. Petersen, T. G. Pedersen, N. A. Mortensen, K. S. Thygesen, Nat. Commun. 2017, 8, 320.
M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, K. Kern, ACS Photonics 2014, 1, 1285.
L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, M. A. Noginov, Appl. Phys. Lett. 2013, 103, 021104.
Y. U. Lee, E. Garoni, H. Kita, K. Kamada, B. H. Woo, Y. C. Jun, S. M. Chae, H. J. Kim, K. J. Lee, S. Yoon, E. Choi, F. Mathevet, I. Ozerov, J. C. Ribierre, J. W. Wu, A. D’Aléo, Adv. Opt. Mater. 2018, 6, 1701400.
Y. U. Lee, O. P. M. Gaudin, K. Lee, E. Choi, V. Placide, K. Takaishi, T. Muto, P. André, A. Muranaka, M. Uchiyama, F. Mathevet, T. Aoyama, J. Wu, A. D’Aléo, J.-C. Ribierre, ACS Photonics 2019, 6, 1681.
J. A. Geldmeier, M. A. Mahmoud, J.-W. W. Jeon, M. El-Sayed, V. V. Tsukruk, J. Mater. Chem. C 2016, 4, 9813.
F. Di Maria, F. Lodola, E. Zucchetti, F. Benfenati, G. Lanzani, Chem. Soc. Rev. 2018, 47, 4757.
J. Chelora, J. Zhang, R. Chen, H. T. Chandran, C.-S. Lee, Nanotechnology 2017, 28, 285102.
C. Bossio, I. Abdel Aziz, G. Tullii, E. Zucchetti, D. Debellis, M. Zangoli, F. Di Maria, G. Lanzani, M. R. Antognazza, Front. Bioeng. Biotechnol. 2018, 6, 114.
T. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P. Smith, M. F. Toney, A. Salleo, Nat. Mater. 2013, 12, 1038.
L. Farouil, F. Alary, E. Bedel-Pereira, J. L. Heully, J. Phys. Chem. A 2018, 122, 6532.
H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
D. Alberga, A. Perrier, I. Ciofini, G. F. Mangiatordi, G. Lattanzi, C. Adamo, Phys. Chem. Chem. Phys. 2015, 17, 18742.
N. Seidler, G. M. Lazzerini, G. Li Destri, G. Marletta, F. Cacialli, J. Mater. Chem. C 2013, 1, 7748.
M. L. Jones, D. M. Huang, B. Chakrabarti, C. Groves, J. Phys. Chem. C 2016, 120, 4240.
E. Miller, M. Jones, E. Jankowski, Polymers 2018, 10, 1358.
S. G. Urquhart, M. Martinson, S. Eger, V. Murcia, H. Ade, B. A. Collins, J. Phys. Chem. C 2017, 121, 21720.
M. Böckmann, T. Schemme, D. H. De Jong, C. Denz, A. Heuer, N. L. Doltsinis, Phys. Chem. Chem. Phys. 2015, 17, 28616.
D. Raithel, L. Simine, S. Pickel, K. Schötz, F. Panzer, S. Baderschneider, D. Schiefer, R. Lohwasser, J. Köhler, M. Thelakkat, M. Sommer, A. Köhler, P. J. Rossky, R. Hildner, Proc. Natl. Acad. Sci. USA 2018, 115, 2699.
J. Jakowski, J. Huang, S. Garashchuk, Y. Luo, K. Hong, J. Keum, B. G. Sumpter, J. Phys. Chem. Lett. 2017, 8, 4333.
A. Maillard, A. Rochefort, Phys. Rev. B 2009, 79, 115207.
T. Tsumuraya, J.-H. Song, A. J. Freeman, Phys. Rev. B 2012, 86, 075114.
N. Banerji, S. Cowan, E. Vauthey, A. J. Heeger, J. Phys. Chem. C 2011, 115, 9726.
D. M. Delongchamp, R. J. Kline, D. A. Fischer, L. J. Richter, M. F. Toney, Adv. Mater. 2011, 23, 319.
X. Lu, H. Hlaing, D. S. Germack, J. Peet, W. H. Jo, D. Andrienko, K. Kremer, B. M. Ocko, Nat. Commun. 2012, 3, 795.
A. I. Abdul Hapip, F. Abd. Wahab, K. Sulaiman, Mater. Res. Innovations 2011, 15, s198.
G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, A. Boltasseva, Opt. Mater. Express 2012, 2, 478.
A. Ciesielski, L. Skowronski, M. Trzcinski, T. Szoplik, Appl. Surf. Sci. 2017, 421, 349.
D. I. Yakubovsky, A. V. Arsenin, Y. V. Stebunov, D. Y. Fedyanin, V. S. Volkov, Opt. Express 2017, 25, 25574.
G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 2006, 73, 045112.
J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.