Harmonization of Quantitative Parenchymal Enhancement in T


Journal

Journal of magnetic resonance imaging : JMRI
ISSN: 1522-2586
Titre abrégé: J Magn Reson Imaging
Pays: United States
ID NLM: 9105850

Informations de publication

Date de publication:
11 2020
Historique:
received: 09 03 2020
revised: 19 05 2020
accepted: 20 05 2020
pubmed: 4 6 2020
medline: 15 5 2021
entrez: 4 6 2020
Statut: ppublish

Résumé

Differences in imaging parameters influence computer-extracted parenchymal enhancement measures from breast MRI. To investigate the effect of differences in dynamic contrast-enhanced MRI acquisition parameter settings on quantitative parenchymal enhancement of the breast, and to evaluate harmonization of contrast-enhancement values with respect to flip angle and repetition time. Retrospective. We modeled parenchymal enhancement using simulations, a phantom, and two cohorts (N = 398 and N = 302) from independent cancer centers. 1.5T dynamic contrast-enhanced T We assessed harmonization of parenchymal enhancement in simulations and phantom by varying the MR parameters that influence the amount of T Paired Wilcoxon signed-rank-test of bootstrapped kernel density estimations. Before harmonization, simulated enhancement values had a median (IQR) of 0.46 (0.34-0.49). After harmonization, the IQR was reduced: median (IQR): 0.44 (0.44-0.45). In the phantom, the IQR also decreased, median (IQR): 0.96 (0.59-1.22) before harmonization, 0.96 (0.91-1.02) after harmonization. Harmonization yielded significantly (P < 0.001) better overlap in parenchymal enhancement between the cohorts: median (IQR) was 0.46 (0.37-0.58) for cohort 1 vs. 0.37 (0.30-0.44) for cohort 2 before harmonization (57% overlap); and 0.35 (0.28-0.43) vs. .0.37 (0.30-0.44) after harmonization (85% overlap). The proposed practical harmonization method enables an accurate comparison between patients scanned with differences in imaging parameters. 3 TECHNICAL EFFICACY STAGE: 4.

Sections du résumé

BACKGROUND
Differences in imaging parameters influence computer-extracted parenchymal enhancement measures from breast MRI.
PURPOSE
To investigate the effect of differences in dynamic contrast-enhanced MRI acquisition parameter settings on quantitative parenchymal enhancement of the breast, and to evaluate harmonization of contrast-enhancement values with respect to flip angle and repetition time.
STUDY TYPE
Retrospective.
PHANTOM/POPULATIONS
We modeled parenchymal enhancement using simulations, a phantom, and two cohorts (N = 398 and N = 302) from independent cancer centers.
SEQUENCE FIELD/STRENGTH
1.5T dynamic contrast-enhanced T
ASSESSMENT
We assessed harmonization of parenchymal enhancement in simulations and phantom by varying the MR parameters that influence the amount of T
STATISTICAL TESTS
Paired Wilcoxon signed-rank-test of bootstrapped kernel density estimations.
RESULTS
Before harmonization, simulated enhancement values had a median (IQR) of 0.46 (0.34-0.49). After harmonization, the IQR was reduced: median (IQR): 0.44 (0.44-0.45). In the phantom, the IQR also decreased, median (IQR): 0.96 (0.59-1.22) before harmonization, 0.96 (0.91-1.02) after harmonization. Harmonization yielded significantly (P < 0.001) better overlap in parenchymal enhancement between the cohorts: median (IQR) was 0.46 (0.37-0.58) for cohort 1 vs. 0.37 (0.30-0.44) for cohort 2 before harmonization (57% overlap); and 0.35 (0.28-0.43) vs. .0.37 (0.30-0.44) after harmonization (85% overlap).
DATA CONCLUSION
The proposed practical harmonization method enables an accurate comparison between patients scanned with differences in imaging parameters.
LEVEL OF EVIDENCE
3 TECHNICAL EFFICACY STAGE: 4.

Identifiants

pubmed: 32491246
doi: 10.1002/jmri.27244
pmc: PMC7687185
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1374-1382

Subventions

Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States

Informations de copyright

© 2020 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Références

J Clin Oncol. 2019 Apr 20;37(12):954-963
pubmed: 30625040
Eur Radiol. 2019 Sep;29(9):4678-4690
pubmed: 30796568
Phys Med Biol. 2017 Jul 24;62(16):6467-6485
pubmed: 28678022
AJR Am J Roentgenol. 2008 Jun;190(6):1630-6
pubmed: 18492917
Invest Radiol. 2005 Nov;40(11):715-24
pubmed: 16230904
Eur J Radiol. 2015 Jan;84(1):71-76
pubmed: 25454100
Magn Reson Med. 1995 Dec;34(6):910-4
pubmed: 8598820
Eur Radiol. 2008 Jul;18(7):1307-18
pubmed: 18389253
PLoS One. 2013 May 07;8(5):e61969
pubmed: 23667451
Invest Radiol. 2016 Jul;51(7):462-8
pubmed: 26863579
Clin Cancer Res. 2017 Nov 1;23(21):6505-6515
pubmed: 28790119
Transl Oncol. 2014 Feb 01;7(1):130-7
pubmed: 24772216
Radiology. 2016 Apr;279(1):44-55
pubmed: 26624971
Radiology. 2017 Dec;285(3):788-797
pubmed: 28914599
J Magn Reson Imaging. 2007 Aug;26(2):375-85
pubmed: 17622966
Radiology. 2017 Jan;282(1):55-62
pubmed: 27479805
Magn Reson Med. 2007 Sep;58(3):463-72
pubmed: 17763352
Eur Radiol. 2018 Nov;28(11):4705-4716
pubmed: 29736850
Radiology. 2018 Nov;289(2):327-334
pubmed: 30152744
Radiology. 2007 Aug;244(2):356-78
pubmed: 17641361
Eur J Radiol. 2008 May;66(2):160-7
pubmed: 18358659
Radiology. 2007 Sep;244(3):929-30
pubmed: 17709843
Radiology. 2011 Jul;260(1):50-60
pubmed: 21493794
Magn Reson Med. 2007 Jan;57(1):192-200
pubmed: 17191242
J Magn Reson Imaging. 2006 Jan;23(1):87-91
pubmed: 16315211
Breast Cancer Res. 2015 May 19;17:67
pubmed: 25986460
J Magn Reson Imaging. 2020 Jan;51(1):43-61
pubmed: 31004391
AJR Am J Roentgenol. 2015 May;204(5):1120-4
pubmed: 25905951
Radiology. 2013 Jan;266(1):72-80
pubmed: 23023963
Oncotarget. 2017 Feb 7;8(6):10620-10627
pubmed: 27895314
Diagn Interv Radiol. 2017 Nov-Dec;23(6):414-419
pubmed: 29097344
J Magn Reson Imaging. 2009 Dec;30(6):1259-67
pubmed: 19938038
Radiographics. 2014 Jan-Feb;34(1):234-47
pubmed: 24428293
Radiology. 2015 Sep;276(3):675-85
pubmed: 25811614
Transl Oncol. 2017 Oct;10(5):786-792
pubmed: 28806712
Eur J Radiol. 2019 Dec;121:108705
pubmed: 31655316
Radiology. 2011 Dec;261(3):744-51
pubmed: 21878616
J Magn Reson Imaging. 2019 Apr;49(4):927-938
pubmed: 30390383
J Med Imaging (Bellingham). 2020 Jan;7(1):012707
pubmed: 32206682
Breast Cancer Res Treat. 2018 Jun;169(2):217-229
pubmed: 29396665

Auteurs

Bas H M van der Velden (BHM)

Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Michael J van Rijssel (MJ)

Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Beatrice Lena (B)

Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Marielle E P Philippens (MEP)

Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Claudette E Loo (CE)

Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.

Max A A Ragusi (MAA)

Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Sjoerd G Elias (SG)

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Elizabeth J Sutton (EJ)

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Elizabeth A Morris (EA)

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.

Lambertus W Bartels (LW)

Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Kenneth G A Gilhuijs (KGA)

Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH