Reverse genetics reveals single gene of every candidate on Hybrid sterility, X Chromosome QTL 2 (Hstx2) are dispensable for spermatogenesis.
Animals
Crosses, Genetic
Female
Genome
/ genetics
Histone-Lysine N-Methyltransferase
/ genetics
Hybridization, Genetic
/ genetics
Infertility
/ genetics
Male
Mice
Mice, Inbred C57BL
Mice, Inbred ICR
MicroRNAs
/ genetics
Mutation
/ genetics
Reverse Genetics
/ methods
Spermatogenesis
/ genetics
X Chromosome
/ genetics
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 06 2020
03 06 2020
Historique:
received:
04
12
2019
accepted:
11
05
2020
entrez:
5
6
2020
pubmed:
5
6
2020
medline:
15
12
2020
Statut:
epublish
Résumé
F1 hybrid progenies between related subspecies often show hybrid sterility (HS) or inviability. HS is caused by failure of meiotic chromosome synapsis and sex body formation in house mouse. Previous studies identified two HS critical genomic regions named Hstx2 on Chr X and Hst1 on Chr 17 by murine forward genetic approaches. HS gene on Hst1 was reported to be Prdm9. Intersubspecific polymorphisms of Prdm9 induce HS in hybrids, and Prdm9 null mutation leads to sterility in the inbred strain. However, HS gene on Hstx2 remains unknown. Here, using knock-out studies, we showed that HS candidate genes on Hstx2 are not individually essential for spermatogenesis in B6 strain. We examined 12 genes on Hstx2: Ctag2, 4930447F04Rik, Mir743, Mir465d, Mir465c-2, Mir465b-1, Mir465c-1, Mir465, Gm1140, Gm14692, 4933436I01Rik, and Gm6812. These genes were expressed in adult testes, and showed intersubspecific polymorphisms on expressed regions. This first reverse genetic approach to identify HS gene on Hstx2 suggested that the loss of function of any one HS candidate gene does not cause complete sterility, unlike Prdm9. Thus, the mechanism(s) of HS by the HS gene on Hstx2 might be different from that of Prdm9.
Identifiants
pubmed: 32493902
doi: 10.1038/s41598-020-65986-y
pii: 10.1038/s41598-020-65986-y
pmc: PMC7270182
doi:
Substances chimiques
MicroRNAs
0
Histone-Lysine N-Methyltransferase
EC 2.1.1.43
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9060Références
Turelli, M. & Moyle, L. C. Asymmetric postmating isolation: Darwin’s corollary to Haldane’s rule. Genetics 176(2), 1059–1088, https://doi.org/10.1534/genetics.106.065979 (2007).
doi: 10.1534/genetics.106.065979
pubmed: 17435235
pmcid: 1894575
Good, J. M., Handel, M. A. & Nachman, M. W. Asymmetry and polymorphism of hybrid male sterility during the early stages of speciation in house mice. Evolution 62(1), 50–65, https://doi.org/10.1111/j.1558-5646.2007.00257.x (2008).
doi: 10.1111/j.1558-5646.2007.00257.x
pubmed: 18005156
Brideau, N. J. & Barbash, D. A. Functional conservation of the Drosophila hybrid incompatibility gene. Lhr. BMC Evol. Biol. 11(1), 57, https://doi.org/10.1186/1471-2148-11-57 (2011).
doi: 10.1186/1471-2148-11-57
pubmed: 21366928
Coyne, J. A. & Orr, H. A. Speciation. (Sunderland, Massachusetts: Sinauer Associates (2004).
Haldane, J. Sex ration and unisexual sterility in animal hybrids. J. Genet. 12(2), 101–109, https://doi.org/10.1007/BF02983075 (1922).
doi: 10.1007/BF02983075
Dobzhansky, T. Genetics and the Origin of Species. (New York, Columbia University Press (1937).
Muller, H. Isolating mechanisms. evolution, and temperature. Biol. Symp. 6, 71–125 (1942).
Presgraves, D. C. Sex chromosomes and speciation in Drosophila. Trends Genet. 24(7), 336–343, https://doi.org/10.1016/j.tig.2008.04.007 (2008).
doi: 10.1016/j.tig.2008.04.007
pubmed: 18514967
Slotman, M., Della Torre, A. & Powell, J. R. The genetics of inviability and male sterility in hybrids between Anopheles gambiae and An. arabiensis. Genetics 167(1), 275–287, https://doi.org/10.1534/genetics.167.1.275 (2004).
doi: 10.1534/genetics.167.1.275
pubmed: 15166154
pmcid: 1470845
Turelli, M. & Orr, H. A. The dominance theory of Haldane’s rule. Genetics 140, 389–402, https://www.genetics.org/content/140/1/389.short (1995).
Presgraves, D. C. Evaluating genomic signatures of “the large X‐effect” during complex speciation. Mol. Ecol. 27(19), 3822–3830, https://doi.org/10.1111/mec.14777 (2018).
doi: 10.1111/mec.14777
pubmed: 29940087
pmcid: 6705125
Lee, H. Y. et al. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135(6), 1065–1073, https://doi.org/10.1016/j.cell.2008.10.047 (2008).
doi: 10.1016/j.cell.2008.10.047
pubmed: 19070577
Ting, C. T., Tsaur, S. C., Wu, M. L. & Wu, C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282(5393), 1501–1504, https://doi.org/10.1126/science.282.5393.1501 (1998).
doi: 10.1126/science.282.5393.1501
pubmed: 9822383
Bayes, J. J. & Malik, H. S. Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science 326(5959), 1538–1541, https://doi.org/10.1126/science.1181756 (2009).
doi: 10.1126/science.1181756
pubmed: 19933102
pmcid: 2987944
Liénard, M. A., Araripe, L. O. & Hartl, D. L. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids. Proc. Natl. Acad. Sci. USA 113(29), E4200–E4207, https://doi.org/10.1073/pnas.1608337113 (2016).
doi: 10.1073/pnas.1608337113
pubmed: 27357670
Barbash, D. A., Siino, D. F., Tarone, A. M., & Roote, J. A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proc. Natl. Acad. Sci. USA 100(9), 5302-5307, https://doi.org/10.1073/pnas.0836927100 (2003).
doi: 10.1073/pnas.0836927100
Brideau, N. J. et al. Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science 314(5803), 1292–1295, https://doi.org/10.1126/science.1133953 (2006).
doi: 10.1126/science.1133953
pubmed: 17124320
Phadnis, N. et al. An essential cell cycle regulation gene causes hybrid inviability in Drosophila. Science 350(6267), 1552–1555, https://doi.org/10.1126/science.aac7504 (2015).
doi: 10.1126/science.aac7504
pubmed: 26680200
pmcid: 4703311
Tang, S. & Presgraves, D. C. Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities. Science 323(5915), 779–782, https://doi.org/10.1126/science.1169123 (2009).
doi: 10.1126/science.1169123
pubmed: 19197064
pmcid: 2826207
Presgraves, D. C., Balagopalan, L., Abmayr, S. M. & Orr, H. A. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423(6941), 715–719, https://doi.org/10.1038/nature01679 (2003).
doi: 10.1038/nature01679
pubmed: 12802326
Phadnis, N. & Orr, H. A. A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323(5912), 376–379, https://doi.org/10.1126/science.1163934 (2009).
doi: 10.1126/science.1163934
pubmed: 19074311
Cattani, M. V. & Presgraves, D. C. Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species. Genetics 191(2), 549–559, https://doi.org/10.1534/genetics.112.139683 (2012).
doi: 10.1534/genetics.112.139683
pubmed: 22446316
pmcid: 3374317
Sawamura, K., Yamamoto, M. T., & Watanabe, T. K. Hybrid lethal systems in the Drosophila melanogaster species complex. II. The Zygotic hybrid rescue (Zhr) gene of D. melanogaster. Genetics 133(2), 307–313, https://www.genetics.org/content/133/2/307.short (1993).
Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J. C. & Forejt, J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323(5912), 373–375, https://doi.org/10.1126/science.1163601 (2009).
doi: 10.1126/science.1163601
pubmed: 19074312
Bomblies, K. et al. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol. 5(9), e236, https://doi.org/10.1371/journal.pbio.0050236 (2007).
doi: 10.1371/journal.pbio.0050236
pubmed: 17803357
pmcid: 1964774
Larson, E. L., Keeble, S., Vanderpool, D., Dean, M. D. & Good, J. M. The composite regulatory basis of the large X-effect in mouse speciation. Mol. Biol. Evol. 34(2), 282–295, https://doi.org/10.1093/molbev/msw243 (2016).
doi: 10.1093/molbev/msw243
pmcid: 6200130
Ellegren, H. Genomic evidence for a large-Z effect. Proc. R. Soc. Lond. 276(1655), 361–366, https://doi.org/10.1098/rspb.2008.1135 (2009).
doi: 10.1098/rspb.2008.1135
Dufresnes, C. et al. Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes. Sci. Rep. 6(1), 1–7, https://doi.org/10.1038/srep21029 (2016).
doi: 10.1038/srep21029
Forejt, J. & Iványi, P. Genetic studies on male sterility of hybrids between laboratory and wild mice (Mus musculus L.). Genet. Res. 24(2), 189–206, https://doi.org/10.1017/S0016672300015214 (1974).
doi: 10.1017/S0016672300015214
pubmed: 4452481
Gregorová, S. et al. Sub-milliMorgan map of the proximal part of mouse Chromosome 17 including the hybrid sterility 1 gene. Mamm. Genome 7(2), 107, https://doi.org/10.1007/s003359900029 (1996).
doi: 10.1007/s003359900029
pubmed: 8835526
Dzur-Gejdosova, M., Simecek, P., Gregorová, S., Bhattacharyya, T. & Forejt, J. Dissecting the genetic architecture of F
doi: 10.1111/j.1558-5646.2012.01684.x
pubmed: 23106700
Bhattacharyya, T. et al. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids. PLoS Genet. 10(2), https://doi.org/10.1371/journal.pgen.1004088 (2014).
doi: 10.1371/journal.pgen.1004088
Forejt, J. Hybrid sterility in the mouse. Trends Genet. 12(10), 412–417, https://doi.org/10.1016/0168-9525(96)10040-8 (1996).
doi: 10.1016/0168-9525(96)10040-8
pubmed: 8909138
Forejt, J., Pialek, J. & Trachtulec, Z. Hybrid male sterility genes in the mouse subspecific crosses. Evolution of the house mouse, (3), 482-503, (2012).
Gregorová, S. & Forejt, J. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol (Praha), 46(1), 31-41 https://fb.cuni.cz/volume-46-2000-no-1#mus (2000).
Din, W. et al. Origin and radiation of the house mouse: clues from nuclear genes. J. Evol. Biol. 9(5), 519–539, https://doi.org/10.1046/j.1420-9101.1996.9050519.x (1996).
doi: 10.1046/j.1420-9101.1996.9050519.x
Gregorová, S. et al. Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res. 18(3), 509–515, https://doi.org/10.1101/gr.7160508 (2008).
doi: 10.1101/gr.7160508
pubmed: 18256238
pmcid: 2259115
Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327(5967), 836–840, https://doi.org/10.1126/science.1183439 (2010).
doi: 10.1126/science.1183439
pubmed: 20044539
Parvanov, E. D., Petkov, P. M. & Paigen, K. Prdm9 controls activation of mammalian recombination hotspots. Science 327(5967), 835–835, https://doi.org/10.1126/science.1181495 (2010).
doi: 10.1126/science.1181495
pubmed: 20044538
Lustyk, D. et al. Genomic structure of Hstx2 modifier of Prdm9-dependent hybrid male sterility in mice. Genetics 213(2), https://doi.org/10.1534/genetics.119.302554 (2019).
doi: 10.1534/genetics.119.302554
Balcova, M. et al. Hybrid sterility locus on chromosome X controls meiotic recombination rate in mouse. PLoS Genet. 12(4), e1005906, https://doi.org/10.1371/journal.pgen.1005906 (2016).
doi: 10.1371/journal.pgen.1005906
pubmed: 27104744
pmcid: 4841592
Bhattacharyya, T. et al. Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc. Natl. Acad. Sci. USA 110(6), E468–E477, https://doi.org/10.1073/pnas.1219126110 (2013).
doi: 10.1073/pnas.1219126110
pubmed: 23329330
Davies, B. et al. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature 530(7589), 171, https://doi.org/10.1038/nature16931 (2016).
doi: 10.1038/nature16931
pubmed: 26840484
pmcid: 4756437
Smagulova, F., Brick, K., Pu, Y., Camerini-Otero, R. D. & Petukhova, G. V. The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev. 30(3), 266–280, https://doi.org/10.1101/gad.270009.115 (2016).
doi: 10.1101/gad.270009.115
pubmed: 26833728
pmcid: 4743057
Hayashi, K., Yoshida, K. & Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438(7066), 374, https://doi.org/10.1038/nature04112 (2005).
doi: 10.1038/nature04112
pubmed: 16292313
Mihola, O. et al. Histone methyltransferase PRDM9 is not essential for meiosis in male mice. Genome Res. gr-244426, https://doi.org/10.1101/gr.244426.118 (2019).
doi: 10.1101/gr.244426.118
Von Deimlingi, O. H., Forejt, J. & Wienker, T. F. Allelic profile at 37 biochemical loci of two inbred strains of the house mouse derived from wild Mus musculus musculus. Lab. Anim. 22(1), 61–66, doi:10.1258%2F002367788780746610 (1988).
Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537(7621), 508–514, https://doi.org/10.1038/nature19356 (2016).
doi: 10.1038/nature19356
pubmed: 27626380
pmcid: 5295821
Bakker, C. E. et al. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78(1), 23–33, https://doi.org/10.1016/0092-8674(94)90569-X (1994).
doi: 10.1016/0092-8674(94)90569-X
Miyata, H. et al. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice. Proc. Natl. Acad. Sci. USA 113(28), 7704–7710, https://doi.org/10.1073/pnas.1608458113 (2016).
doi: 10.1073/pnas.1608458113
pubmed: 27357688
Gu, Y. et al. Impaired conditioned fear and enhanced long-term potentiation in Fmr2 knock-out mice. J. Neurosci. 22(7), 2753–2763, https://doi.org/10.1523/JNEUROSCI.22-07-02753.2002 (2002).
doi: 10.1523/JNEUROSCI.22-07-02753.2002
pubmed: 11923441
pmcid: 6758318
Oliver, P. L. et al. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet. 5(12), e1000753, https://doi.org/10.1371/journal.pgen.1000753 (2009).
doi: 10.1371/journal.pgen.1000753
pubmed: 19997497
pmcid: 2779102
Ota, H. et al. Identification of the X-linked germ cell specific miRNAs (XmiRs) and their functions. PLoS one 14(2), e0211739, https://doi.org/10.1371/journal.pone.0211739 (2019).
doi: 10.1371/journal.pone.0211739
pubmed: 30707741
pmcid: 6358104
Royo, H. et al. Silencing of X-linked microRNAs by meiotic sex chromosome inactivation. PLoS Genet. 11(10), e1005461, https://doi.org/10.1371/journal.pgen.1005461 (2015).
doi: 10.1371/journal.pgen.1005461
pubmed: 26509798
pmcid: 4624941
Hoshino, Y. et al. Simple generation of hairless mice for in vivo imaging. Exp. Anim. 66(4), 437–445, https://doi.org/10.1538/expanim.17-0049 (2017).
doi: 10.1538/expanim.17-0049
pubmed: 28717054
pmcid: 5682356
Sato, Y. et al. A mutation in transcription factor MAFB causes Focal Segmental Glomerulosclerosis with Duane Retraction Syndrome. Kidney Int. 94(2), 396–407, https://doi.org/10.1016/j.kint.2018.02.025 (2018).
doi: 10.1016/j.kint.2018.02.025
pubmed: 29779709