Reverse genetics reveals single gene of every candidate on Hybrid sterility, X Chromosome QTL 2 (Hstx2) are dispensable for spermatogenesis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
03 06 2020
Historique:
received: 04 12 2019
accepted: 11 05 2020
entrez: 5 6 2020
pubmed: 5 6 2020
medline: 15 12 2020
Statut: epublish

Résumé

F1 hybrid progenies between related subspecies often show hybrid sterility (HS) or inviability. HS is caused by failure of meiotic chromosome synapsis and sex body formation in house mouse. Previous studies identified two HS critical genomic regions named Hstx2 on Chr X and Hst1 on Chr 17 by murine forward genetic approaches. HS gene on Hst1 was reported to be Prdm9. Intersubspecific polymorphisms of Prdm9 induce HS in hybrids, and Prdm9 null mutation leads to sterility in the inbred strain. However, HS gene on Hstx2 remains unknown. Here, using knock-out studies, we showed that HS candidate genes on Hstx2 are not individually essential for spermatogenesis in B6 strain. We examined 12 genes on Hstx2: Ctag2, 4930447F04Rik, Mir743, Mir465d, Mir465c-2, Mir465b-1, Mir465c-1, Mir465, Gm1140, Gm14692, 4933436I01Rik, and Gm6812. These genes were expressed in adult testes, and showed intersubspecific polymorphisms on expressed regions. This first reverse genetic approach to identify HS gene on Hstx2 suggested that the loss of function of any one HS candidate gene does not cause complete sterility, unlike Prdm9. Thus, the mechanism(s) of HS by the HS gene on Hstx2 might be different from that of Prdm9.

Identifiants

pubmed: 32493902
doi: 10.1038/s41598-020-65986-y
pii: 10.1038/s41598-020-65986-y
pmc: PMC7270182
doi:

Substances chimiques

MicroRNAs 0
Histone-Lysine N-Methyltransferase EC 2.1.1.43

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9060

Références

Turelli, M. & Moyle, L. C. Asymmetric postmating isolation: Darwin’s corollary to Haldane’s rule. Genetics 176(2), 1059–1088, https://doi.org/10.1534/genetics.106.065979 (2007).
doi: 10.1534/genetics.106.065979 pubmed: 17435235 pmcid: 1894575
Good, J. M., Handel, M. A. & Nachman, M. W. Asymmetry and polymorphism of hybrid male sterility during the early stages of speciation in house mice. Evolution 62(1), 50–65, https://doi.org/10.1111/j.1558-5646.2007.00257.x (2008).
doi: 10.1111/j.1558-5646.2007.00257.x pubmed: 18005156
Brideau, N. J. & Barbash, D. A. Functional conservation of the Drosophila hybrid incompatibility gene. Lhr. BMC Evol. Biol. 11(1), 57, https://doi.org/10.1186/1471-2148-11-57 (2011).
doi: 10.1186/1471-2148-11-57 pubmed: 21366928
Coyne, J. A. & Orr, H. A. Speciation. (Sunderland, Massachusetts: Sinauer Associates (2004).
Haldane, J. Sex ration and unisexual sterility in animal hybrids. J. Genet. 12(2), 101–109, https://doi.org/10.1007/BF02983075 (1922).
doi: 10.1007/BF02983075
Dobzhansky, T. Genetics and the Origin of Species. (New York, Columbia University Press (1937).
Muller, H. Isolating mechanisms. evolution, and temperature. Biol. Symp. 6, 71–125 (1942).
Presgraves, D. C. Sex chromosomes and speciation in Drosophila. Trends Genet. 24(7), 336–343, https://doi.org/10.1016/j.tig.2008.04.007 (2008).
doi: 10.1016/j.tig.2008.04.007 pubmed: 18514967
Slotman, M., Della Torre, A. & Powell, J. R. The genetics of inviability and male sterility in hybrids between Anopheles gambiae and An. arabiensis. Genetics 167(1), 275–287, https://doi.org/10.1534/genetics.167.1.275 (2004).
doi: 10.1534/genetics.167.1.275 pubmed: 15166154 pmcid: 1470845
Turelli, M. & Orr, H. A. The dominance theory of Haldane’s rule. Genetics 140, 389–402, https://www.genetics.org/content/140/1/389.short (1995).
Presgraves, D. C. Evaluating genomic signatures of “the large X‐effect” during complex speciation. Mol. Ecol. 27(19), 3822–3830, https://doi.org/10.1111/mec.14777 (2018).
doi: 10.1111/mec.14777 pubmed: 29940087 pmcid: 6705125
Lee, H. Y. et al. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell 135(6), 1065–1073, https://doi.org/10.1016/j.cell.2008.10.047 (2008).
doi: 10.1016/j.cell.2008.10.047 pubmed: 19070577
Ting, C. T., Tsaur, S. C., Wu, M. L. & Wu, C. I. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282(5393), 1501–1504, https://doi.org/10.1126/science.282.5393.1501 (1998).
doi: 10.1126/science.282.5393.1501 pubmed: 9822383
Bayes, J. J. & Malik, H. S. Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science 326(5959), 1538–1541, https://doi.org/10.1126/science.1181756 (2009).
doi: 10.1126/science.1181756 pubmed: 19933102 pmcid: 2987944
Liénard, M. A., Araripe, L. O. & Hartl, D. L. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids. Proc. Natl. Acad. Sci. USA 113(29), E4200–E4207, https://doi.org/10.1073/pnas.1608337113 (2016).
doi: 10.1073/pnas.1608337113 pubmed: 27357670
Barbash, D. A., Siino, D. F., Tarone, A. M., & Roote, J. A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proc. Natl. Acad. Sci. USA 100(9), 5302-5307, https://doi.org/10.1073/pnas.0836927100 (2003).
doi: 10.1073/pnas.0836927100
Brideau, N. J. et al. Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science 314(5803), 1292–1295, https://doi.org/10.1126/science.1133953 (2006).
doi: 10.1126/science.1133953 pubmed: 17124320
Phadnis, N. et al. An essential cell cycle regulation gene causes hybrid inviability in Drosophila. Science 350(6267), 1552–1555, https://doi.org/10.1126/science.aac7504 (2015).
doi: 10.1126/science.aac7504 pubmed: 26680200 pmcid: 4703311
Tang, S. & Presgraves, D. C. Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities. Science 323(5915), 779–782, https://doi.org/10.1126/science.1169123 (2009).
doi: 10.1126/science.1169123 pubmed: 19197064 pmcid: 2826207
Presgraves, D. C., Balagopalan, L., Abmayr, S. M. & Orr, H. A. Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423(6941), 715–719, https://doi.org/10.1038/nature01679 (2003).
doi: 10.1038/nature01679 pubmed: 12802326
Phadnis, N. & Orr, H. A. A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323(5912), 376–379, https://doi.org/10.1126/science.1163934 (2009).
doi: 10.1126/science.1163934 pubmed: 19074311
Cattani, M. V. & Presgraves, D. C. Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species. Genetics 191(2), 549–559, https://doi.org/10.1534/genetics.112.139683 (2012).
doi: 10.1534/genetics.112.139683 pubmed: 22446316 pmcid: 3374317
Sawamura, K., Yamamoto, M. T., & Watanabe, T. K. Hybrid lethal systems in the Drosophila melanogaster species complex. II. The Zygotic hybrid rescue (Zhr) gene of D. melanogaster. Genetics 133(2), 307–313, https://www.genetics.org/content/133/2/307.short (1993).
Mihola, O., Trachtulec, Z., Vlcek, C., Schimenti, J. C. & Forejt, J. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323(5912), 373–375, https://doi.org/10.1126/science.1163601 (2009).
doi: 10.1126/science.1163601 pubmed: 19074312
Bomblies, K. et al. Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol. 5(9), e236, https://doi.org/10.1371/journal.pbio.0050236 (2007).
doi: 10.1371/journal.pbio.0050236 pubmed: 17803357 pmcid: 1964774
Larson, E. L., Keeble, S., Vanderpool, D., Dean, M. D. & Good, J. M. The composite regulatory basis of the large X-effect in mouse speciation. Mol. Biol. Evol. 34(2), 282–295, https://doi.org/10.1093/molbev/msw243 (2016).
doi: 10.1093/molbev/msw243 pmcid: 6200130
Ellegren, H. Genomic evidence for a large-Z effect. Proc. R. Soc. Lond. 276(1655), 361–366, https://doi.org/10.1098/rspb.2008.1135 (2009).
doi: 10.1098/rspb.2008.1135
Dufresnes, C. et al. Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes. Sci. Rep. 6(1), 1–7, https://doi.org/10.1038/srep21029 (2016).
doi: 10.1038/srep21029
Forejt, J. & Iványi, P. Genetic studies on male sterility of hybrids between laboratory and wild mice (Mus musculus L.). Genet. Res. 24(2), 189–206, https://doi.org/10.1017/S0016672300015214 (1974).
doi: 10.1017/S0016672300015214 pubmed: 4452481
Gregorová, S. et al. Sub-milliMorgan map of the proximal part of mouse Chromosome 17 including the hybrid sterility 1 gene. Mamm. Genome 7(2), 107, https://doi.org/10.1007/s003359900029 (1996).
doi: 10.1007/s003359900029 pubmed: 8835526
Dzur-Gejdosova, M., Simecek, P., Gregorová, S., Bhattacharyya, T. & Forejt, J. Dissecting the genetic architecture of F
doi: 10.1111/j.1558-5646.2012.01684.x pubmed: 23106700
Bhattacharyya, T. et al. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids. PLoS Genet. 10(2), https://doi.org/10.1371/journal.pgen.1004088 (2014).
doi: 10.1371/journal.pgen.1004088
Forejt, J. Hybrid sterility in the mouse. Trends Genet. 12(10), 412–417, https://doi.org/10.1016/0168-9525(96)10040-8 (1996).
doi: 10.1016/0168-9525(96)10040-8 pubmed: 8909138
Forejt, J., Pialek, J. & Trachtulec, Z. Hybrid male sterility genes in the mouse subspecific crosses. Evolution of the house mouse, (3), 482-503, (2012).
Gregorová, S. & Forejt, J. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol (Praha), 46(1), 31-41 https://fb.cuni.cz/volume-46-2000-no-1#mus (2000).
Din, W. et al. Origin and radiation of the house mouse: clues from nuclear genes. J. Evol. Biol. 9(5), 519–539, https://doi.org/10.1046/j.1420-9101.1996.9050519.x (1996).
doi: 10.1046/j.1420-9101.1996.9050519.x
Gregorová, S. et al. Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res. 18(3), 509–515, https://doi.org/10.1101/gr.7160508 (2008).
doi: 10.1101/gr.7160508 pubmed: 18256238 pmcid: 2259115
Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327(5967), 836–840, https://doi.org/10.1126/science.1183439 (2010).
doi: 10.1126/science.1183439 pubmed: 20044539
Parvanov, E. D., Petkov, P. M. & Paigen, K. Prdm9 controls activation of mammalian recombination hotspots. Science 327(5967), 835–835, https://doi.org/10.1126/science.1181495 (2010).
doi: 10.1126/science.1181495 pubmed: 20044538
Lustyk, D. et al. Genomic structure of Hstx2 modifier of Prdm9-dependent hybrid male sterility in mice. Genetics 213(2), https://doi.org/10.1534/genetics.119.302554 (2019).
doi: 10.1534/genetics.119.302554
Balcova, M. et al. Hybrid sterility locus on chromosome X controls meiotic recombination rate in mouse. PLoS Genet. 12(4), e1005906, https://doi.org/10.1371/journal.pgen.1005906 (2016).
doi: 10.1371/journal.pgen.1005906 pubmed: 27104744 pmcid: 4841592
Bhattacharyya, T. et al. Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc. Natl. Acad. Sci. USA 110(6), E468–E477, https://doi.org/10.1073/pnas.1219126110 (2013).
doi: 10.1073/pnas.1219126110 pubmed: 23329330
Davies, B. et al. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice. Nature 530(7589), 171, https://doi.org/10.1038/nature16931 (2016).
doi: 10.1038/nature16931 pubmed: 26840484 pmcid: 4756437
Smagulova, F., Brick, K., Pu, Y., Camerini-Otero, R. D. & Petukhova, G. V. The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev. 30(3), 266–280, https://doi.org/10.1101/gad.270009.115 (2016).
doi: 10.1101/gad.270009.115 pubmed: 26833728 pmcid: 4743057
Hayashi, K., Yoshida, K. & Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438(7066), 374, https://doi.org/10.1038/nature04112 (2005).
doi: 10.1038/nature04112 pubmed: 16292313
Mihola, O. et al. Histone methyltransferase PRDM9 is not essential for meiosis in male mice. Genome Res. gr-244426, https://doi.org/10.1101/gr.244426.118 (2019).
doi: 10.1101/gr.244426.118
Von Deimlingi, O. H., Forejt, J. & Wienker, T. F. Allelic profile at 37 biochemical loci of two inbred strains of the house mouse derived from wild Mus musculus musculus. Lab. Anim. 22(1), 61–66, doi:10.1258%2F002367788780746610 (1988).
Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature 537(7621), 508–514, https://doi.org/10.1038/nature19356 (2016).
doi: 10.1038/nature19356 pubmed: 27626380 pmcid: 5295821
Bakker, C. E. et al. Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78(1), 23–33, https://doi.org/10.1016/0092-8674(94)90569-X (1994).
doi: 10.1016/0092-8674(94)90569-X
Miyata, H. et al. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice. Proc. Natl. Acad. Sci. USA 113(28), 7704–7710, https://doi.org/10.1073/pnas.1608458113 (2016).
doi: 10.1073/pnas.1608458113 pubmed: 27357688
Gu, Y. et al. Impaired conditioned fear and enhanced long-term potentiation in Fmr2 knock-out mice. J. Neurosci. 22(7), 2753–2763, https://doi.org/10.1523/JNEUROSCI.22-07-02753.2002 (2002).
doi: 10.1523/JNEUROSCI.22-07-02753.2002 pubmed: 11923441 pmcid: 6758318
Oliver, P. L. et al. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet. 5(12), e1000753, https://doi.org/10.1371/journal.pgen.1000753 (2009).
doi: 10.1371/journal.pgen.1000753 pubmed: 19997497 pmcid: 2779102
Ota, H. et al. Identification of the X-linked germ cell specific miRNAs (XmiRs) and their functions. PLoS one 14(2), e0211739, https://doi.org/10.1371/journal.pone.0211739 (2019).
doi: 10.1371/journal.pone.0211739 pubmed: 30707741 pmcid: 6358104
Royo, H. et al. Silencing of X-linked microRNAs by meiotic sex chromosome inactivation. PLoS Genet. 11(10), e1005461, https://doi.org/10.1371/journal.pgen.1005461 (2015).
doi: 10.1371/journal.pgen.1005461 pubmed: 26509798 pmcid: 4624941
Hoshino, Y. et al. Simple generation of hairless mice for in vivo imaging. Exp. Anim. 66(4), 437–445, https://doi.org/10.1538/expanim.17-0049 (2017).
doi: 10.1538/expanim.17-0049 pubmed: 28717054 pmcid: 5682356
Sato, Y. et al. A mutation in transcription factor MAFB causes Focal Segmental Glomerulosclerosis with Duane Retraction Syndrome. Kidney Int. 94(2), 396–407, https://doi.org/10.1016/j.kint.2018.02.025 (2018).
doi: 10.1016/j.kint.2018.02.025 pubmed: 29779709

Auteurs

Kento Morimoto (K)

Laboratory Animal Science, Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

Koki Numata (K)

Laboratory Animal Science, Bachelor of Medical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
Department of Clinical Laboratories, University of Tsukuba Hospital, 2-1-1 Amakubo Tsukuba, Ibaraki, 305-8576, Japan.

Yoko Daitoku (Y)

Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

Yuko Hamada (Y)

Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

Keiko Kobayashi (K)

Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
Developmental Engineering & Embryology Group Genetically Engineered Models and Services Charles River Laboratories Japan, Inc., 955 Kamibayashi, Ishioka, Ibaraki, 315-0138, Japan.

Kanako Kato (K)

Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

Hayate Suzuki (H)

Laboratory Animal Science, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

Shinya Ayabe (S)

Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.

Atsushi Yoshiki (A)

Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.

Satoru Takahashi (S)

Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

Kazuya Murata (K)

Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

Seiya Mizuno (S)

Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. konezumi@md.tsukuba.ac.jp.

Fumihiro Sugiyama (F)

Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH