Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential.
Anti-Bacterial Agents
/ chemistry
Cassia
/ chemistry
Escherichia coli
/ drug effects
Green Chemistry Technology
/ methods
Melia
/ chemistry
Metal Nanoparticles
/ chemistry
Microbial Sensitivity Tests
/ methods
Particle Size
Plant Extracts
/ chemistry
Plant Leaves
/ chemistry
Staphylococcus aureus
/ drug effects
Zinc Oxide
/ chemistry
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
03 06 2020
03 06 2020
Historique:
received:
23
09
2019
accepted:
22
01
2020
entrez:
5
6
2020
pubmed:
5
6
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Development of plant based nanoparticles has many advantages over conventional physico-chemical methods and has various applications in medicine and biology. In present study, zinc oxide (ZnO) nanoparticles (NPs) were synthesized using leaf extracts of two medicinal plants Cassia fistula and Melia azadarach. 0.01 M zinc acetate dihydrate was used as a precursor in leaf extracts of respective plants for NPs synthesis. The structural and optical properties of NPs were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), ultraviolet-visible spectrophotometer (UV-Vis) and dynamic light scattering (DLS). The antibacterial potential of ZnO NPs was examined by paper disc diffusion method against two clinical strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) based on the zone of inhibition and minimal inhibitory indices (MIC). Change in color of the reaction mixture from brown to white indicated the formation of ZnO NPs. UV peaks at 320 nm and 324 nm, and XRD pattern matching that of JCPDS card for ZnO confirmed the presence of pure ZnO NPs. FTIR further confirmed the presence of bioactive functional groups involved in the reduction of bulk zinc acetate to ZnO NPs. SEM analysis displayed the shape of NPs to be spherical whereas DLS showed their size range from 3 to 68 nm. The C. fistula and M. azadarach mediated ZnO NPs showed strong antimicrobial activity against clinical pathogens compared to standard drugs, suggesting that plant based synthesis of NPs can be an excellent strategy to develop versatile and eco-friendly biomedical products.
Identifiants
pubmed: 32493935
doi: 10.1038/s41598-020-65949-3
pii: 10.1038/s41598-020-65949-3
pmc: PMC7270115
doi:
Substances chimiques
Anti-Bacterial Agents
0
Plant Extracts
0
Zinc Oxide
SOI2LOH54Z
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9055Références
Kavitha, K. S. et al. Plants as green source towards synthesis of nanoparticles. Int. Res. J. Biol. Sci. 2, 66–76 (2013).
Malik, P., Shankar, R., Malik, V., Sharma, N. & Mukherjee, T.K. Green chemistry based benign routes for nanoparticle synthesis. J. Nanopart. https://doi.org/10.1155/2014/302429 (2014).
doi: 10.1155/2014/302429
Kalpana, V. N. & Rajeswari, V. D. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl. https://doi.org/10.1155/2018/3569758 (2018).
doi: 10.1155/2018/3569758
Makarov, V. V. et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6, 35–44 (2014).
doi: 10.32607/20758251-2014-6-1-35-44
Arya, V. Living systems: Eco-friendly nanofactories. Dig. J. Nanomater Bios. 5, 9–21 (2010).
Biswas, B., Rogers, K., Mclaughlin, F., Daniels, D. & Yadav, A. Antimicrobial activities of leaf extracts of Guava (Psidium guajava L.) on two Gram-negative and Gram-positive bacteria. Int. J. Microbiol. https://doi.org/10.1155/2013/746165 (2013).
doi: 10.1155/2013/746165
Mittal, A. K., Chisti, Y. & Banerjee, U. C. Synthesis of metallic nanoparticles using plant extratcs. Biotechnol. Adv. http://dx.doi.org/10.1016/ (2013).
Rajan, R., Chandran, K., Harper, S. L., Yun, S. I. & Kalaichelvan, P. T. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Ind. Crop Prod. 70, 356–373 (2015).
doi: 10.1016/j.indcrop.2015.03.015
Ahmed, S., Ahmad, M., Swami, B. L. & Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 7, 17–28 (2016).
doi: 10.1016/j.jare.2015.02.007
Fan, Z. Y. & Lu, J. G. Zinc oxide nanostructures: Synthesis and properties. J. Nanosci. Nanotechnol. 5, 1561–1573 (2005).
doi: 10.1166/jnn.2005.182
Sushma, N. J., Mahitha, B., Mallikarjuna, K. & Deva, P. R. B. Bio-inspired ZnO nanoparticles from Ocimum tenuiflorum and their in vitro antioxidant activity. Appl. Phys. A 122, 544 (2016).
doi: 10.1007/s00339-016-0069-9
Ramesh, P., Rajendran, A. & Sundaram, M. Green syntheis of zinc oxide nanoparticles using flower extract Cassia Auriculata. J. Nanosci. Nanotechnol. 2, 41–45 (2014).
Divya, M. J., Sowmia, C., Joona, K. & Dhanya, K. P. Synthesis of zinc oxide nanoparticle from hibiscus rosa-sinensis leaf extract and investigation of its antimicrobial activity. Res. J. Pharm. Biol. Chem. Sci. 4, 1137–1142 (2013).
Awwad, A., Albiss, B. & Ahmad, A. L. Green synthesis, characterization and optical properties of zinc oxide nanosheets using Olea europea leaf extract. Adv. Mater. Lett. 5, 520–524 (2014).
doi: 10.5185/amlett.2014.5575
Gunalan, S., Sivaraj, R. & Rajendran, V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International 22, 693–700 (2012).
doi: 10.1016/j.pnsc.2012.11.015
Santoshkumar, J., Kumar, S. V. & Rajeshkumar, S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies 3, 459–465 (2017).
doi: 10.1016/j.reffit.2017.05.001
Al-Dhabi, N. A. & Arasu, M. V. Environmentally friendly green approach for the production of Zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials 8, 500 (2018).
doi: 10.3390/nano8070500
Shah, R. K., Boruah, F. & Parween, N. Synthesis and characterization of ZnO nanoparticles using leaf extract of Camelia sinensis and evaluation of their antimicrobial efficacy. Int. J. Curr. Microbiol. Appl. Res. 4, 444–450 (2019).
Veerachari, U. & Bopaiah, A. K. Preliminary phyto-chemical evaluation of the leaf extract of five cassia species. J. Chem. Pharm. Res. 3, 574–584 (2011).
Bahorun, T., Neergheen, V. S. & Aruoma, O. I. Phytochemical constituents of Cassia fistula. Afri. J. Biotechnol. 4, 1530–1540 (2005).
Azam, M. M., Mamoon-ur-Rasheed, A. N. M., Towfique, N. M., Sen, M. K. & Nasrin, S. Pharmacological potentials of Melia azedarach L. - A review. Am. J. Bios. 1, 44–49 (2013).
doi: 10.11648/j.ajbio.20130102.13
Rajiv, P., Rajeshwari, S. & Venckatesh, R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochimica Acta Part A: Mol. Biomol. Spectr. 112, 384–387 (2013).
doi: 10.1016/j.saa.2013.04.072
Saware, K. & Venkataraman, A. Biosynthesis and characterization of stable silver nanoparticles using Ficus religiosa leaf extract: A mechanism perspective. J. Clust. Sci. 25, 1157–1171 (2014).
doi: 10.1007/s10876-014-0697-1
Jain, S. & Mehata, M. S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. 7, 15867, https://doi.org/10.1038/s41598-017-15724-8 (2017).
doi: 10.1038/s41598-017-15724-8
pubmed: 29158537
pmcid: 5696514
Zhang, D. H., Xue, Z. Y. & Wang, P. Q. The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering. J. Phys. D Appl. Phys. 35, 2837 (2002).
doi: 10.1088/0022-3727/35/21/321
Bhatte, K. D., Sawant, D. N., Pinjari, D. V., Pandit, A. B. & Bhanage, B. M. One pot green synthesis of nano sized zinc oxide by sonochemical method. Mater. Lett. 77, 93–95 (2012).
doi: 10.1016/j.matlet.2012.03.012
Das, D., Nath, B. C., Phukon, P. & Dolui, S. K. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids. Surf. B Biointerfaces. 101, 430–433 (2013).
doi: 10.1016/j.colsurfb.2012.07.002
Honary, S., Barabadi, H., Gharaei, E. & Naghibi, F. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmani. Dig. J. Nanomater Bios. 7, 999–1005 (2012).
Feng, Q. et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 15, 662–668 (2000).
doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
Pan, K. & Zhong, Q. Organic nanoparticles in foods: Fabrication, characterization, and utilization. Annu. Rev. Food Sci. T. 7, 245–266 (2016).
doi: 10.1146/annurev-food-041715-033215
Wiley, B., Sun, Y., Mayers, B. & Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. A Eur. J. 11, 454–463 (2006).
doi: 10.1002/chem.200400927
Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P. & Mukherji, S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia 4, 707–716 (2008).
doi: 10.1016/j.actbio.2007.11.006
Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: NBM 3, 95–101 (2007).
doi: 10.1016/j.nano.2006.12.001
Brus, L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).
doi: 10.1021/j100403a003
Wolkers, W. & Oldenhof, H. In situ FTIR assessment of dried Lactobacillus bulgaricus: KBr disk formation affects physical properties. Spectroscopy 15, 89–99 (2005).
doi: 10.1155/2005/216509
Herrera, M., Carrion, P., Baca, P., Liebana, J. & Castillo, A. In vitro antibacterial activity of glass-ionomer cements. Microbios 104, 141–148 (2001).
pubmed: 11327108