Differential induction of surface chemical compositional change on tooth structure by glass ionomer restorative materials.
Crown
Element
Glass ionomer cement
Root
Superficial chemical composition
Tooth surface
Journal
Odontology
ISSN: 1618-1255
Titre abrégé: Odontology
Pays: Japan
ID NLM: 101134822
Informations de publication
Date de publication:
Jan 2021
Jan 2021
Historique:
received:
11
12
2019
accepted:
15
05
2020
pubmed:
5
6
2020
medline:
12
1
2021
entrez:
5
6
2020
Statut:
ppublish
Résumé
Glass ionomer cement (GIC) is a restorative dental material capable of promoting mineral deposition on surrounding tooth substrates. However, it is unclear as to whether demineralization and remineralization due to an oral pH change of the tooth affect the dissolution pattern of tooth crown and root differently. It also remains to be elucidated how GIC alters superficial chemical compositions of tooth crown structurally known as enamel, in relation to the root. In this study, we investigated an effect of pH challenge on chemical compositional change of tooth crown and root, as well as the contribution of GIC restorations on a shift of elemental abundance on tooth crown and root. Our findings demonstrated that an exposure to a pH cycling resulted in a drastic change of elemental profile of the root, but not the crown. Modification of superficial elemental ingredients of GIC-restored cavities located on different anatomical part of the tooth was found after an acid attack. Notably, a differential induction of chemical compositional shift was dependent on the type of GIC used and the location of restored GIC. Our study highlights a susceptibility of root portion to acid-induced elemental dissolution, and that GIC use might be implicated in the delayed dissolution rate of the tooth structure.
Identifiants
pubmed: 32495193
doi: 10.1007/s10266-020-00528-6
pii: 10.1007/s10266-020-00528-6
doi:
Substances chimiques
Acrylic Resins
0
Composite Resins
0
Dental Materials
0
Glass Ionomer Cements
0
glass ionomer
0
Silicon Dioxide
7631-86-9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
124-138Références
Curzon MEJ, Preston AJ. Risk groups: nursing bottle caries/caries in the elderly. Caries Res. 2004;38:24–33.
doi: 10.1159/000074359
Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. J Mater Chem. 2011;21:1319–28.
doi: 10.1039/C0JM02309D
Benelli EM, Serra MC, Rodrigues AL, Cury JA. In situ anticariogenic potential of glass ionomer cement. Caries Res. 1993;27:280–4.
doi: 10.1159/000261551
Chau NPT, Pandit S, Cai JN, Lee MH, Jeon JG. Relationship between fluoride release rate and anti-cariogenic biofilm activity of glass ionomer cements. Dent Mater. 2015;31:e100–e108108.
doi: 10.1016/j.dental.2014.12.016
Chau NPT, Pandit S, Jung JE, Cai JN, Yi HK, Jeon JG. Long-term anti-cariogenic biofilm activity of glass ionomers related to fluoride release. J Dent. 2016;47:34–40.
doi: 10.1016/j.jdent.2016.02.006
Burgess JO, Gallo JR. Treating root-surface caries. Dent Clin North Am. 2002;46:385–404.
doi: 10.1016/S0011-8532(01)00003-9
Fukuda R, Yoshida Y, Nakayama Y, Okazaki M, Inoue S, Sano H, et al. Bonding efficacy of polyalkenoic acids to hydroxyapatite, enamel and dentin. Biomaterials. 2003;24:1861–7.
doi: 10.1016/S0142-9612(02)00575-6
McComb D, Erickson RL, Maxymiw WG, Wood RE. A clinical comparison of glass ionomer, resin-modified glass ionomer and resin composite restorations in the treatment of cervical caries in xerostomic head and neck radiation patients. Oper Dent. 2002;27:430–7.
pubmed: 12216559
Tam LE, Chan GPL, Yim D. In vitro caries inhibition effects by conventional and resin-modified glass-ionomer restorations. Oper Dent. 1997;22:4–14.
pubmed: 9227122
Dionysopoulos P, Kotsanos N, Koliniotou-Koubia E, Tolidis K. Inhibition of demineralization in vitro around fluoride releasing materials. J Oral Rehabil. 2003;30:1216–22.
doi: 10.1111/j.1365-2842.2003.01079.x
Trairatvorakul C, Itsaraviriyakul S, Wiboonchan W. Effect of glass-ionomer cement on the progression of proximal caries. J Dent Res. 2011;90:99–103.
doi: 10.1177/0022034510381265
Dastmalchi R, Poison A, Bouwsma O, Proskin H. Cementum thickness and mesial drift. J Clin Periodontol. 1990;17:709–13.
doi: 10.1111/j.1600-051X.1990.tb01058.x
Štamfelj I, Vidmar G, Cvetko E, Gašperšič D. Cementum thickness in multirooted human molars: a histometric study by light microscopy. Ann Anat. 2008;190:129–39.
doi: 10.1016/j.aanat.2007.10.006
Apostolopoulos AX, Buonocore MG. Comparative dissolution rates of enamel, dentin, and bone. I. Effect of the organic matter. J Dent Res. 1966;45:1093–100.
doi: 10.1177/00220345660450041201
Zan KW, Nakamura K, Hamba H, Sadr A, Nikaido T, Tagami J. Micro-computed tomography assessment of root dentin around fluoride-releasing restorations after demineralization/remineralization. Eur J Oral Sci. 2018;126:390–9.
doi: 10.1111/eos.12558
Ten Cate JM. Current concepts on the theories of the mechanism of action of fluoride. Acta Odontol Scand. 1999;57:325–9.
doi: 10.1080/000163599428562
Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res. 2019;53:284–95.
doi: 10.1159/000493031
Retief DH, Bradley EL, Denton JC, Switzer P. Enamel and cementum fluoride uptake from a glass ionomer cement. Caries Res. 1984;18:250–7.
doi: 10.1159/000260773
del Gutiérrez-Salazar MP, Reyes-Gasga J. Microhardness and chemical composition of human tooth. Mater Res. 2003;6:367–73.
doi: 10.1590/S1516-14392003000300011
De Dios TJ, Alcolea A, Hernández A, Ruiz AJO. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. 2015;60:768–75.
doi: 10.1016/j.archoralbio.2015.01.014
Featherstone JDB. Dental caries: a dynamic disease process. Aust Dent J. 2008;53:286–91.
doi: 10.1111/j.1834-7819.2008.00064.x
Neel EAA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization–remineralization dynamics in teeth and bone. Int J Nanomedicine. 2016;11:4735–41.
doi: 10.2147/IJN.S114025
Shannon IL, Trodahl JN. Effect of waterborne fluoride on fluoride concentration and solubility of dental enamel. Aust Dent J. 1977;22:428–31.
doi: 10.1111/j.1834-7819.1977.tb05145.x
Margolis HC, Moreno EC, Murphy BJ. Effect of low levels of fluoride in solution on enamel demineralization in vitro. J Dent Res. 1986;65:23–9.
doi: 10.1177/00220345860650010301
Shannon IL, Edmonds EJ. Effect of fluoride concentration on rehardening of enamel by a saliva substitute. Int Dent J. 1978;28:421–6.
pubmed: 282263
ten Cate JM, Buzalaf MAR. Fluoride mode of action: once there was an observant dentist. J Dent Res. 2019;98:725–30.
doi: 10.1177/0022034519831604
Momoi Y, McCabe JF. Fluoride release from light-activated glass ionomer restorative cements. Dent Mater. 1993;9:151–4.
doi: 10.1016/0109-5641(93)90112-4
Takahashi K, Emilson CG, Birkhed D. Fluoride release in vitro from various glass ionomer cements and resin composites after exposure to NaF solutions. Dent Mater. 1993;9:350–4.
doi: 10.1016/0109-5641(93)90055-U
Comar LP, de Souza BM, Grizzo LT, Buzalaf MAR, Magalhães AC. Evaluation of fluoride release from experimental TiF4 and NaF varnishes in vitro. J Appl Oral Sci. 2014;22:138–43.
doi: 10.1590/1678-775720130574
Duckworth RM, Morgan SN. Oral fluoride retention after use of fluoride dentifrices. Caries Res. 1991;25:123–9.
doi: 10.1159/000261354
Øgaard B. CaF2 formation: cariostatic properties and factors of enhancing the effect. Caries Res. 2001;35:40–4.
doi: 10.1159/000049109
Pereira PNR, Inokoshi S, Tagami J. In vitro secondary caries inhibition around fluoride releasing materials. J Dent. 1998;26:505–10.
doi: 10.1016/S0300-5712(98)00008-6
Naoum S, Ellakwa A, Martin F, Swain M. Fluoride release, recharge and mechanical property stability of various fluoride-containing resin composites. Oper Dent. 2011;36:422–32.
doi: 10.2341/10-414-L
Klimuszko E, Orywal K, Sierpinska T, Sidun J, Golebiewska M. Evaluation of calcium and magnesium contents in tooth enamel without any pathological changes: in vitro preliminary study. Odontology. 2018;106:369–76.
doi: 10.1007/s10266-018-0353-6
Yamazaki H, Litman A, Margolis HC. Effect of fluoride on artificial caries lesion progression and repair in human enamel: Regulation of mineral deposition and dissolution under in vivo-like conditions. Arch Oral Biol. 2007;52:110–20.
doi: 10.1016/j.archoralbio.2006.08.012