Alterted Adipogenesis of Human Mesenchymal Stem Cells by Photobiomodulation Using 1064 nm Laser Light.

1064 nm laser adipogenesis human mesenchymal stem cells photobiomodulation

Journal

Lasers in surgery and medicine
ISSN: 1096-9101
Titre abrégé: Lasers Surg Med
Pays: United States
ID NLM: 8007168

Informations de publication

Date de publication:
02 2021
Historique:
received: 26 02 2020
revised: 27 04 2020
accepted: 23 05 2020
pubmed: 5 6 2020
medline: 29 10 2021
entrez: 5 6 2020
Statut: ppublish

Résumé

Photobiomodulation (PBM) describes the influence of light irradiation on biological tissues. Laser light in the near-infrared (NIR) spectrum has been shown to mitigate pain, reduce inflammation, and promote wound healing. The cellular mechanism that mediates PBM's effects is generally accepted to be at the site of the mitochondria, leading to an increased flux through the electron transport chain and adenosine triphosphate (ATP) production. Moreover, PBM has been demonstrated to reduce oxidative stress through an increased production of reactive oxygen species (ROS)-sequestering enzymes. The aim of the study is to determine whether these PBM-induced effects expedite or interfere with the intended stem cell differentiation to the adipogenic lineage. To determine the effects of 1064 nm laser irradiation (fluence of 8.8-26.4 J/cm At a low fluence (8.8 J/cm We characterized the use of NIR light exposure to modulate adipogenesis. Both the ATP and ROS levels in hMSCs responded to different energy densities. The current study is expected to contribute significantly to the growing field of PBM as well as stem cell tissue engineering by demonstrating the wavelength-dependent responses of hMSC differentiation. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.

Sections du résumé

BACKGROUND AND OBJECTIVES
Photobiomodulation (PBM) describes the influence of light irradiation on biological tissues. Laser light in the near-infrared (NIR) spectrum has been shown to mitigate pain, reduce inflammation, and promote wound healing. The cellular mechanism that mediates PBM's effects is generally accepted to be at the site of the mitochondria, leading to an increased flux through the electron transport chain and adenosine triphosphate (ATP) production. Moreover, PBM has been demonstrated to reduce oxidative stress through an increased production of reactive oxygen species (ROS)-sequestering enzymes. The aim of the study is to determine whether these PBM-induced effects expedite or interfere with the intended stem cell differentiation to the adipogenic lineage.
STUDY DESIGN/MATERIALS AND METHODS
To determine the effects of 1064 nm laser irradiation (fluence of 8.8-26.4 J/cm
RESULTS
At a low fluence (8.8 J/cm
CONCLUSION
We characterized the use of NIR light exposure to modulate adipogenesis. Both the ATP and ROS levels in hMSCs responded to different energy densities. The current study is expected to contribute significantly to the growing field of PBM as well as stem cell tissue engineering by demonstrating the wavelength-dependent responses of hMSC differentiation. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.

Identifiants

pubmed: 32495397
doi: 10.1002/lsm.23278
doi:

Substances chimiques

Reactive Oxygen Species 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

263-274

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med 2001;226(6):507-520. https://doi.org/10.1177/153537020122600603
Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007;25(11):2739-2749. https://doi.org/10.1634/stemcells.2007-0197
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677-689. https://doi.org/10.1016/j.cell.2006.06.044
Zhao W, Li X, Liu X, Zhang N, Wen X. Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biological Appl 2014;40:316-323. https://doi.org/10.1016/j.msec.2014.03.048
Mao AS, Shin J-W, Mooney DJ. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials 2016;98:184-191. https://doi.org/10.1016/j.biomaterials.2016.05.004
Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 2010;107(11):4872-4877. https://doi.org/10.1073/pnas.0903269107
Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 2015;33(4):183-184. https://doi.org/10.1089/pho.2015.9848
Freitas LF, de, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 2016;22(3):348-364. https://doi.org/10.1109/jstqe.2016.2561201
Tasumi M. Chapter 1: Introduction to infrared spectroscopy. In: Tasumi M, editor. Introduction to Experimental Infrared Spectroscopy: Fundamentals and Practical Methods. Hoboken, NJ: John Wiley and Sons; 2014. pp 33-59.
Fekrazad R, Asefi S, Allahdadi M, Kalhori KAM. Effect of photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 2016;34(11):533-542. https://doi.org/10.1089/pho.2015.4029
Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 2018;94(2):199-212. https://doi.org/10.1111/php.12864
Linares SN, Beltrame T, Ferraresi C, Galdino GAM, Catai AM. Photobiomodulation effect on local hemoglobin concentration assessed by near-infrared spectroscopy in humans. Laser Med Sci 2019;35:1-9. https://doi.org/10.1007/s10103-019-02861-x
Karu TI. Cellular and molecular mechanisms of photobiomodulation (low-power laser therapy). IEEE J Sel Top Quant 2014;20(2):143-148. https://doi.org/10.1109/jstqe.2013.2273411
Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Harkness LE, Woodruff LD. The efficacy of low-power lasers in tissue repair and pain control: A meta-analysis study. Photomed Laser Surg 2004;22(4):323-329. https://doi.org/10.1089/pho.2004.22.323
Amaroli A, Ravera S, Baldini F, Benedicenti S, Panfoli I, Vergani L. Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Laser Med Sci 2018;34(3):495-504. https://doi.org/10.1007/s10103-018-2623-5
Wang X, Tian F, Reddy DD, et al. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab 2017;37(12):3789-3802. https://doi.org/10.1177/0271678x17691783
Hamblin MR. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 2017;4(3):337-361. https://doi.org/10.3934/biophy.2017.3.337
Chrzanowskalightowlers ZMA, Turnbull DM, Lightowlers RN. A microtiter plate assay for cytochrome c oxidase in permeabilized whole cells. Anal Biochem 1993;214(1):45-49. https://doi.org/10.1006/abio.1993.1454
Beard DA. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput Biol 2005;1(4):e36. https://doi.org/10.1371/journal.pcbi.0010036
Selivanov VA, Votyakova TV, Pivtoraiko VN, et al. Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain. PLoS Comput Biol 2011;7(3):e1001115. https://doi.org/10.1371/journal.pcbi.1001115
Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2012;48(2):158-167. https://doi.org/10.1016/j.molcel.2012.09.025
Temple MD, Perrone GG, Dawes IW. Complex cellular responses to reactive oxygen species. Trends Cell Biol 2005;15(6):319-326. https://doi.org/10.1016/j.tcb.2005.04.003
Powers SK, Duarte J, Kavazis AN, Talbert EE. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol 2009;95(1):1-9. https://doi.org/10.1113/expphysiol.2009.050526
Shum LC, White NS, Mills BN, Bentley KL, de M, Eliseev RA. Energy metabolism in mesenchymal stem cells during osteogenic differentiation. Stem Cells Dev 2015;25(2):114-122. https://doi.org/10.1089/scd.2015.0193
Zhang Y, Marsboom G, Toth PT, Rehman J. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS One 2013;8(10):e77077. https://doi.org/10.1371/journal.pone.0077077
Lin C-H, Li N-T, Cheng H-S, Yen M-L. Oxidative stress induces imbalance of adipogenic/osteoblastic lineage commitment in mesenchymal stem cells through decreasing SIRT1 functions. J Cell Mol Med 2017;22(2):786-796. https://doi.org/10.1111/jcmm.13356
James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica 2013;2013:1-17. https://doi.org/10.1155/2013/684736
Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: A morphological and molecular in vitro study. Int J Mol Sci 2018;19(7):1946. https://doi.org/10.3390/ijms19071946
Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 2016;6(1):33719. https://doi.org/10.1038/srep33719
Hamblin MR. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin 2016;6:113-124. https://doi.org/10.1016/j.bbacli.2016.09.002
Ayuk SM, Abrahamse H, Houreld NN. The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J Diabetes Res 2016;2016:2897656-2897659. https://doi.org/10.1155/2016/2897656
Tian F, Hase SN, Gonzalez-Lima F, Liu H. Transcranial laser stimulation improves human cerebral oxygenation. Laser Surg Med 2016;48(4):343-349. https://doi.org/10.1002/lsm.22471
Ramalho KM, de Freitas PM, Correa-Aranha AC, Bello-Silva MS, Lopes RM da G, Eduardo C de P. Lasers in esthetic dentistry: Soft tissue photobiomodulation, hard tissue decontamination, and ceramics conditioning. Case Rep 2014;2014:927429. https://doi.org/10.1155/2014/927429
Zein R, Selting W, Hamblin MR. Review of light parameters and photobiomodulation efficacy: Dive into complexity. J Biomed Opt 2018;23:1-17. https://doi.org/10.1117/1.jbo.23.12.120901
Wang X, Dmochowski JP, Zeng L, et al. Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms. Proc SPIE 2019;6:1. https://doi.org/10.1117/1.nph.6.2.025013
Pruitt T, Wang X, Wu A, Kallioniemi E, Husain MM, Liu H. Transcranial photobiomodulation (tPBM) with 1,064-nm laser to improve cerebral metabolism of the human brain in vivo [published online ahead of print March 15, 2020]. Laser Surg Med. https://doi.org/10.1002/lsm.23232
Rojas JC, Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye Brain 2011;3:49-67. https://doi.org/10.2147/eb.s21391
Titushkin I, Sun S, Paul A, Cho M. Control of adipogenesis by ezrin, radixin and moesin-dependent biomechanics remodeling. J Biomech 2013;46(3):521-526. https://doi.org/10.1016/j.jbiomech.2012.09.027
McColloch A, Rabiei M, Rabbani P, Bowling A, Cho M. Correlation between nuclear morphology and adipogenic differentiation: Application of a combined experimental and computational modeling approach. Sci Rep 2019;9(1):16381. https://doi.org/10.1038/s41598-019-52926-8
Sarrafzadeh O, Dehnavi A. Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing. Adv Biomed Res 2015;4:4.
Walton PA, Pizzitelli M. Effects of peroxisomal catalase inhibition on mitochondrial function. Front Physiol 2012;3:108. https://doi.org/10.3389/fphys.2012.00108
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001;25(4):402-408. https://doi.org/10.1006/meth.2001.1262
Chen J, Shi Z-D, Ji X, Morales J, Zhang J, Kaur N, Wang S. Enhanced osteogenesis of human mesenchymal stem cells by periodic heat shock in self-assembling peptide hydrogel. Tissue Eng Part A 2012;19(5-6):716-728. https://doi.org/10.1089/ten.tea.2012.0070
Ikuta K, Urakawa H, Kozawa E, et al. In vivo heat-stimulus-triggered osteogenesis. Int J Hyperth 2014;31(1):58-66. https://doi.org/10.3109/02656736.2014.988662
Lee O-H, Kwon Y-I, Hong H-D, Park C-S, Lee B-Y, Kim Y-C. Production of reactive oxygen species and changes in antioxidant enzyme activities during differentiation of 3T3-L1 adipocyte. J Korean Soc Appl BI 2009;52(1):70-75. https://doi.org/10.3839/jksabc.2009.012
Kanda Y, Hinata T, Kang SW, Watanabe Y. Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci 2011;89(7-8):250-258. https://doi.org/10.1016/j.lfs.2011.06.007
Caruso-Davis MK, Guillot TS, Podichetty VK, et al. Efficacy of low-level laser therapy for body contouring and spot fat reduction. Obes Surg 2011;21(6):722-729. https://doi.org/10.1007/s11695-010-0126-y
McRae E, Boris J. Independent evaluation of low-level laser therapy at 635 nm for non-invasive body contouring of the waist, hips, and thighs. Laser Surg Med 2013;45(1):1-7. https://doi.org/10.1002/lsm.22113
Jackson RF, Dedo DD, Roche GC, Turok DI, Maloney RJ. Low-level laser therapy as a non-invasive approach for body contouring: a randomized, controlled study. Laser Surg Med 2009;41(10):799-809. https://doi.org/10.1002/lsm.20855
Jackson RF, Stern FA, Neira R, Ortiz-Neira CL, Maloney J. Application of low-level laser therapy for noninvasive body contouring. Laser Surg Med 2012;44(3):211-217. https://doi.org/10.1002/lsm.22007
Neira R, Arroyave J, Ramirez H, et al. Fat liquefaction: Effect of low-level laser energy on adipose tissue. Plast Reconstr Surg 2002;110(3):912-922. https://doi.org/10.1097/01.prs.0000019876.96703.ae
Medrado AP, Trindade E, Reis SRA, Andrade ZA. Action of low-level laser therapy on living fatty tissue of rats. Laser Med Sci 2006;21(1):19-23. https://doi.org/10.1007/s10103-005-0367-5
Oron U, Ilic S, Taboada LD, Streeter J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg 2007;25(3):180-182. https://doi.org/10.1089/pho.2007.2064
Quirk BJ, Sannagowdara K, Buchmann EV, Jensen ES, Gregg DC, Whelan HT. Effect of near-infrared light on in vitro cellular ATP production of osteoblasts and fibroblasts and on fracture healing with intramedullary fixation. J Clin Orthop Trauma 2016;7(4):234-241. https://doi.org/10.1016/j.jcot.2016.02.009
Ferraresi C, Kaippert B, Avci P, et al. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h. Photochem Photobiol 2014;91(2):411-416. https://doi.org/10.1111/php.12397
van Horssen R, Janssen E, Peters W, et al. Modulation of cell motility by spatial repositioning of enzymatic ATP/ADP exchange capacity. J Biological Chem 2008;284(3):1620-1627. https://doi.org/10.1074/jbc.m806974200
Lee DG, Bell SP. ATPase switches controlling DNA replication initiation. Curr Opin Cell Biol 2000;12(3):280-285. https://doi.org/10.1016/s0955-0674(00)00089-2
Chiang B, Essick E, Ehringer W, Murphree S, Hauck MA, Li M, Chien S. Enhancing skin wound healing by direct delivery of intracellular adenosine triphosphate. Am J Surg 2007;193(2):213-218. https://doi.org/10.1016/j.amjsurg.2006.08.069
Birket MJ, Orr AL, Gerencser AA, et al. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci 2011;124(Pt 3):348-358. https://doi.org/10.1242/jcs.072272
Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 2014;15(4):243-256. https://doi.org/10.1038/nrm3772
Chen C-T, Shih Y-RV, Kuo TK, Lee OK, Wei Y-H. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 2008;26(4):960-968. https://doi.org/10.1634/stemcells.2007-0509
Buravkova LB, Rylova YV, Andreeva ER, et al. Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells. Biochim Biophys Acta 2013;1830(10):4418-4425. https://doi.org/10.1016/j.bbagen.2013.05.029
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 2007;8(2):104-115. https://doi.org/10.1038/nrg2041
Nguyen HQ, Bosco G. Gene positioning effects on expression in eukaryotes. Annu Rev Genet 2015;49(1):627-646. https://doi.org/10.1146/annurev-genet-112414-055008
Guelen L, Pagie L, Brasset E, et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 2008;453(7197):948-951. https://doi.org/10.1038/nature06947
Kosak ST, Scalzo D, Alworth SV, et al. Coordinate gene regulation during hematopoiesis is related to genomic organization. PLoS Biol 2007;5(11):e309. https://doi.org/10.1371/journal.pbio.0050309
Houreld NN, Sekhejane PR, Abrahamse H. Irradiation at 830 nm stimulates nitric oxide production and inhibits pro-inflammatory cytokines in diabetic wounded fibroblast cells. Laser Surg Med 2010;42(6):494-502. https://doi.org/10.1002/lsm.20812
Dröse S, Brandt U. Advances in experimental medicine and biology. Adv Exp Med Biol 2012;748:145-169. https://doi.org/10.1007/978-1-4614-3573-06
Schenk B, Fulda S. Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death. Oncogene 2015;34(47):5796-5806. https://doi.org/10.1038/onc.2015.35
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med 2018;54(4):287-293. https://doi.org/10.1016/j.ajme.2017.09.001
Higuchi M, Dusting GJ, Peshavariya H, et al. Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev 2012;22(6):878-888. https://doi.org/10.1089/scd.2012.0306
Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting β-catenin from T cell factor- to Forkhead Box O-mediated transcription. J Biol Chem 2007;282(37):27298-27305. https://doi.org/10.1074/jbc.m702811200
Imhoff BR, Hansen JM. Extracellular redox environments regulate adipocyte differentiation. Differentiation 2010;80(1):31-39. https://doi.org/10.1016/j.diff.2010.04.005
Lee O-H, Kwon Y-I, Apostolidis E, Shetty K, Kim Y-C. Rhodiola-induced inhibition of adipogenesis involves antioxidant enzyme response associated with pentose phosphate pathway. Phytotherapy Res 2011;25(1):106-115. https://doi.org/10.1002/ptr.3236
Yang D, Yi W, Wang E, Wang M. Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Sci Rep 2016;6(1):37370. https://doi.org/10.1038/srep37370
Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR. Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: Proliferation and differentiation to bone or cartilage. Laser Med Sci 2018;34(1):115-126. https://doi.org/10.1007/s10103-018-2620-8
Chen AC-H, Arany PR, Huang Y-Y, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 2011;6(7):e22453. https://doi.org/10.1371/journal.pone.0022453
Kim JE, Woo YJ, Sohn KM, Jeong KH, Kang H. Wnt/β-catenin and ERK pathway activation: A possible mechanism of photobiomodulation therapy with light-emitting diodes that regulate the proliferation of human outer root sheath cells. Laser Surg Med 2017;49(10):940-947. https://doi.org/10.1002/lsm.22736
Amaroli A, Benedicenti A, Ferrando S, et al. Photobiomodulation by infrared diode-laser: Effects on intracellular calcium concentration and nitric oxide production of paramecium. Photochem Photobiol 2016;92(6):854-862. https://doi.org/10.1111/php.12644
Zhang R-F, Wang Q, Zhang A-A, et al. Low-level laser irradiation promotes the differentiation of bone marrow stromal cells into osteoblasts through the APN/Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 2018;22(9):2860-2868. https://doi.org/10.26355/eurrev_201805_14988
Wang Y, Huang Y-Y, Wang Y, Lyu P, Hamblin MR. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta 2016;1861(2):441-449. https://doi.org/10.1016/j.bbagen.2016.10.008

Auteurs

Andrew McColloch (A)

Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019.

Caleb Liebman (C)

Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019.

Hanli Liu (H)

Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019.

Michael Cho (M)

Department of Bioengineering, The University of Texas at Arlington, Arlington, Texas, 76019.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH