Dried yeast cell walls high in beta-glucan and mannan-oligosaccharides positively affect microbial composition and activity in the canine gastrointestinal tract in vitro.
Animals
Cell Wall
/ chemistry
Diet
/ veterinary
Dietary Supplements
/ analysis
Dogs
/ microbiology
Enterobacteriaceae
/ drug effects
Fermentation
Fusobacteria
/ drug effects
Gastrointestinal Microbiome
/ drug effects
Gastrointestinal Tract
/ metabolism
Mannans
/ pharmacology
Oligosaccharides
/ pharmacology
Saccharomyces cerevisiae
/ chemistry
Yeast, Dried
/ chemistry
beta-Glucans
/ pharmacology
Saccharomyces cerevisiae
dogs
in vitro
microbiota
propionate
Journal
Journal of animal science
ISSN: 1525-3163
Titre abrégé: J Anim Sci
Pays: United States
ID NLM: 8003002
Informations de publication
Date de publication:
01 Jun 2020
01 Jun 2020
Historique:
received:
23
01
2020
accepted:
03
06
2020
pubmed:
5
6
2020
medline:
27
10
2020
entrez:
5
6
2020
Statut:
ppublish
Résumé
The outer cell wall of yeast is characterized by high levels of β-glucans and mannan-oligosaccharides (MOS), which have been linked with beneficial effects on intestinal health and immune status in dogs. In this study, a standardized in vitro simulation of the canine gastrointestinal tract (Simulator of the Canine Intestinal Microbial Ecosystem; SCIME) was used to evaluate the effect of a Saccharomyces cerevisiae-based product, consisting of 27.5% β-glucans and 22.5% MOS, on the activity (as assessed by measurement of fermentative metabolites) and composition (as assessed by 16S-targeted Illumina sequencing) of canine intestinal microbiota. The S. cerevisiae-based product was tested at three different dosages, i.e., 0.5, 1.0, and 2.0 g/d. A dose-dependent fermentation pattern was observed along the entire length of the colon, as shown by the increased production of the health-related acetate, propionate, and butyrate for the three concentrations tested (0.5, 1.0, and 2.0 g/d). A consistent finding for all three tested concentrations was the increased propionate production (P < 0.05) in the simulated proximal and distal colon. These changes in terms of fermentative metabolites could be linked to specific microbial alterations at the family level, such as the specific stimulation of the propionate-producing families Porphyromonadaceae and Prevotellaceae upon in vitro exposure to the S. cerevisiae-based product. Other consistent changes in community composition upon repeated exposure included the decrease in the Enterobacteriaceae and the Fusobacteriaceae families, which both contain several potentially opportunistic pathogens. Altogether, the generated data support a possible health-promoting role of a product high in β-glucans and MOS when supplemented to the dogs' diet.
Identifiants
pubmed: 32497185
pii: 5851475
doi: 10.1093/jas/skaa173
pmc: PMC7295327
pii:
doi:
Substances chimiques
Mannans
0
Oligosaccharides
0
beta-Glucans
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science.
Références
Environ Microbiol. 2017 Aug;19(8):3251-3267
pubmed: 28618173
FEMS Microbiol Ecol. 2010 Dec;74(3):601-11
pubmed: 20946352
ISME J. 2013 May;7(5):949-61
pubmed: 23235287
Acta Cir Bras. 2006;21 Suppl 4:23-6
pubmed: 17293961
J Nutr Metab. 2012;2012:851362
pubmed: 22187640
Physiol Rev. 2007 Oct;87(4):1409-39
pubmed: 17928588
Nutr Res Rev. 2001 Dec;14(2):207-28
pubmed: 19087424
J Anim Sci. 2020 Jan 1;98(1):
pubmed: 31768533
J Nutr. 2002 May;132(5):980-9
pubmed: 11983825
Nucleic Acids Res. 2013 Jan 7;41(1):e1
pubmed: 22933715
Appl Environ Microbiol. 2013 Sep;79(17):5112-20
pubmed: 23793624
Acta Vet Hung. 2013 Sep;61(3):297-308
pubmed: 23921342
Arch Anim Nutr. 2004 Dec;58(6):483-93
pubmed: 15732581
FEMS Microbiol Ecol. 2004 Dec 27;51(1):143-53
pubmed: 16329863
Microb Biotechnol. 2012 Jan;5(1):106-15
pubmed: 21989255
Appl Environ Microbiol. 2007 Aug;73(16):5261-7
pubmed: 17586664
Environ Microbiol. 2013 Apr;15(4):1016-39
pubmed: 22515215
Gut Pathog. 2017 Nov 21;9:68
pubmed: 29201150
J Appl Microbiol. 2005;99(1):201-12
pubmed: 15960680
J Anim Sci. 2007 Nov;85(11):3022-32
pubmed: 17644789
Appl Environ Microbiol. 2000 May;66(5):2001-5
pubmed: 10788373
Biochem J. 1973 Sep;135(1):19-30
pubmed: 4359920
Appl Environ Microbiol. 2011 May;77(10):3219-26
pubmed: 21421784
J Nutr. 1998 Oct;128(10):1786-93
pubmed: 9772150
Poult Sci. 2000 Feb;79(2):205-11
pubmed: 10735748
Poult Sci. 1989 Oct;68(10):1351-6
pubmed: 2685796
Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5
pubmed: 19004872
Clin Vaccine Immunol. 2010 Feb;17(2):281-5
pubmed: 20032218
Environ Microbiol Rep. 2013 Aug;5(4):595-603
pubmed: 23864575
Cell Microbiol. 2005 Apr;7(4):471-9
pubmed: 15760447