Mechanisms of programmed cell death in the midgut and salivary glands from Bradysia hygida (Diptera: Sciaridae) during pupal-adult metamorphosis.


Journal

Cell biology international
ISSN: 1095-8355
Titre abrégé: Cell Biol Int
Pays: England
ID NLM: 9307129

Informations de publication

Date de publication:
Oct 2020
Historique:
received: 18 02 2020
revised: 19 05 2020
accepted: 02 06 2020
pubmed: 5 6 2020
medline: 11 8 2021
entrez: 5 6 2020
Statut: ppublish

Résumé

Programmed cell death is involved with the degeneration/remodeling of larval tissues and organs during holometabolous development. The midgut is a model to study the types of programmed cell death associated with metamorphosis because its structure while degenerating is a substrate for the formation of the adult organ. Another model is the salivary glands from dipteran because their elimination involves different cell death modes. This study aimed to investigate the models of programmed cell death operating during midgut replacement and salivary gland histolysis in Bradysia hygida. We carried out experiments of real-time observations, morphological analysis, glycogen detection, filamentous-actin localization, and nuclear acridine orange staining. Our findings allow us to establish that an intact actin cytoskeleton is required for midgut replacement in B. hygida and nuclear condensation and acridine orange staining precede the death of the larval cells. Salivary glands in histolysis present cytoplasmic blebbing, nuclear retraction, and acridine orange staining. This process can be partially reproduced in vitro. We propose that the larval midgut death involves autophagic and apoptotic features and apoptosis is a mechanism involved with salivary gland histolysis.

Identifiants

pubmed: 32497316
doi: 10.1002/cbin.11404
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1981-1990

Subventions

Organisme : Fundação Araucária de Apoio Científico e Tecnológico do Paraná
ID : 5/2006

Informations de copyright

© 2020 International Federation for Cell Biology.

Références

Basso, L. R., Jr., Vasconcelos, C., Fontes, A. M., Hartfelder, K., Silva, J. A., Coelho, P. S. R., & Paço-Larson, M. L. (2002). The induction of DNA puff BhC4-1 gene is a late response to the increase in 20-hydroxyecdysone titers in last instar dipteran larvae. Mechanisms of Development, 110, 15-26. https://doi.org/10.1016/s0925-4773(01)00589-5
Berry, D. L., & Baehrecke, E. H. (2007). Growth arrest and autophagy are required for salivary gland cell degradation in. Drosophila Cell, 131(6), 1137-1148. https://doi.org/10.1016/j.cell.2007.10.048
Berry, D. L., & Baehrecke, E. H. (2008). Autophagy functions in programmed cell death. Autophagy, 4(3), 359-360. https://doi.org/10.4161/auto.5575
Bowen, I. D., Mullarkey, K., & Morgan, S. M. (1996). Programmed cell death during metamorphosis in the blow-fly Calliphora vomitoria. Microscopy Research and Technique, 34(3), 202-217. https://doi.org/10.1002/(sici)1097-0029(19960615)34:3<202::aid-jemt3>3.0.co;2-r
Brandão, A. S., Amaral, J. B., Resende-Teixeira, P., Hartfelder, K., Siviero, F., & Machado-Santelli, G. M. (2014). Cell death and tissue reorganization in Rhynchosciara americana (Sciaridae: Diptera) metamorphosis and their relation to molting hormone titers. Arthropod Structure & Development, 43(5), 511-522. https://doi.org/10.1016/j.asd.2014.05.001
Bursch, W., Hochegger, K., Torok, L., Marian, B., Ellinger, A., & Hermann, R. S. (2000). Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. Journal of Cell Science, 113, 1189-1198.
Denton, D., Shravage, B. V., Simin, R., Baehrecke, E. H., & Kumar, S. (2010). Larval midgut destruction in Drosophila: Not dependent on caspases but suppressed by the loss of autophagy. Autophagy, 6(1), 163-165. https://doi.org/10.4161/auto.6.1.10601
Denton, D., Shravage, B., Simin, R., Mills, K., Berry, D. L., Baehrecke, E. H., & Kumar, S. (2009). Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Current Biology, 19(20), 1741-1746. https://doi.org/10.1016/j.cub.2009.08.042
Facey, C. O., & Lockshin, R. A. (2010). The execution phase of autophagy associated PCD during insect metamorphosis. Apoptosis, 15, 639-652. https://doi.org/10.1007/s10495-010-0499-3
Franzetti, E., Huang, Z. J., Shi, Y. X., Xie, K., Deng, X. J., Li, J. P., & Tettamanti, G. (2012). Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis, 17, 305-324. https://doi.org/10.1007/s10495-011-0675-0
Franzetti, E., Romanelli, D., Caccia, S., Cappellozza, S., Congiu, T., Rajagopalan, M., & Tettamanti, G. (2015). The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium. Cell and Tissue Research, 361, 509-528. https://doi.org/10.1007/s00441-014-2081-8
Gabrusewicz-Garcia, N. (1964). Cytological and autoradiographic studies in Sciara coprophila salivary chromossomes. Chromosoma, 15, 312-344.
Gregorc, A., & Bowen, I. D. (1997). Programmed cell death in the honey-bee (Apis mellifera L.) larvae midgut. Cell Biology International, 21(3), 151-158. https://doi.org/10.1006/cbir.1997.0127
Hakim, R. S., Baldwin, K., & Smagghe, G. (2010). Regulation of midgut growth, development and metamorphosis. Annual Reviews, 55, 593-608. https://doi.org/10.1146/annurev-ento-112408-085450
Jiang, C., Baehrecke, E. H., & Thummel, C. S. (1997). Steroid regulated programmed cell death during Drosophila metamorphosis. Development, 124, 4673-4683.
Laicine, E. M., Alves, M. A. R., de Almeida, J. C., Rizzo, E., Albernaz, W. C., & Sauaia, H. (1984). Development of DNA puffs and patterns of polypeptide synthesis in the salivary gland of Bradysia hygida. Chromosoma, 89, 280-285.
Monesi, N., Candido-Silva, J. A., Paçó-Larson, M. L., & de Almeida, J. C. (2009). Regulation of sciarid DNA puffs by ecdysone: Mechanisms and perspectives. In E. Smagghe (Ed.), Ecdysone: Structures and functions (1st ed., pp. 165-183). Dordrecht, The Netherlands: Springer Science+Business Media B.V.
Myohara, M. (2004). Real-time observation of autophagic programmed cell death of Drosophila salivary glands in vitro. Development Genes and Evolution, 214, 99-104. https://doi.org/10.1007/s00427-003-0374-0
Okuda, K., Almeida, F., Mortara, R. A., Krieger, H., Marinotti, O., & Bijovsky, A. T. (2007). Cell death and regeneration in the midgut of the mosquito Culex quinquefasciatus. Journal of Insect Physiology, 53, 1307-1311. https://doi.org/10.1016/j.jinsphys.2007.07.005
Sauaia, H., & Alves, M. A. R. (1968). A description of new species of Bradysia (Diptera, Sciaridae). Papéis Avulsos de Zoologia, 22, 85-88.
Sauaia, H., Laicine, E. M., & Alves, M. A. R. (1971). Hydroxyurea-induced inhibition of DNA puff development in salivary gland chromosomes of Bradysia hygida. Chromosoma, 34, 129-151.
Silva-Zacarin, E. C. M. (2007). Autophagy and apoptosis coordinate physiological cell death in larval salivary glands of Apis mellifera (Hymenoptera: Apidae). Autophagy, 3(5), 516-518. https://doi.org/10.4161/auto.4735
Silva-Zacarin, E. C. M., Taboga, S. R., & Moraes, R. L. M. S. (2008). Nuclear alterations associated to programmed cell death in larval salivary glands of Apis mellifera (Hymenoptera: Apidae). Micron, 39(2), 117-127. https://doi.org/10.1016/j.micron.2006.12.001
Simon, C. R., & Almeida, J. C. (2004). Programmed cell death in Bradysia hygida (Diptera Sciaridae) salivary glands presents apoptotic features. Genesis, 40, 22-31. https://doi.org/10.1002/gene.20059
Simon, C. R., Siviero, F., & Monesi, N. (2016). Beyond DNA puffs: What can we learn from studying sciarids? Genesis, 54(7), 361-378. https://doi.org/10.1002/dvg.22946
Tettamanti, G., Grimaldi, A., Casartelli, M., Ambrosetti, E., Ponti, B., Congiu, T., & De Eguileor, M. (2007). Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell and Tissue Research, 330, 345-359. https://doi.org/10.1007/s00441-007-0449-8
Tettamanti, G., Grimaldi, A., Pennacchio, F., & De Eguileor, M. (2007). Lepidopteran larval midgut during prepupal instar: Digestion or self-digestion? Autophagy, 3(6), 630-641. https://doi.org/10.4161/auto.4908
Tettamanti, G., Saló, E., González-Estévez, C., Felix, D. A., Grimaldi, A., & De Eguileor, M. (2008). Autophagy in invertebrates: Insights into development, regeneration and body remodeling. Current Pharmaceutical Design, 14(2), 116-125. https://doi.org/10.2174/138161208783378716
Tolmasky, D. S., Rabossi, A., & Quesada-allué, lA. (2001). Synthesis and mobilization of glycogen during metamorphosis of the ceratitis capitata. Archives of Biochemistry and Biophysics, 392(1), 38-47. https://doi.org/10.1006/abbi.2001.2394
Uwo, M. F., UI-Tei, K., Park, P., & Taked, M. (2002). Replacement of midgut epithelium in the greater wax moth, Galleria mellonela, during larval-pupal moult. Cell and Tissue Research, 308, 319-331. https://doi.org/10.1007/s00441-002-0515-1
Yin, V. P., & Thummel, C. S. (2005). Mechanisms of steroid-triggered programmed cell death in Drosophila. Seminars in Cell and Developmental Biology, 16, 237-243. https://doi.org/10.1016/j.semcdb.2004.12.00
Zhang, G., & Hua, B. (2014). Fine structure of the midgut of Sinopanorpa tincta (Navás) (Mecoptera: Panorpidae). Tissue and Cell, 46, 388-396. https://doi.org/10.1016/j.tice.2014.07.002

Auteurs

Thaylise de Cassia Santos Przepiura (T)

Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.

Aryelle M Navarro (AM)

Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.

Rafaela da Rosa Ribeiro (R)

Instituto Israelita de Ensino e Pesquisa Albert Einstein (IIEPAE), São Paulo, São Paulo, Brazil.

José R Gomes (JR)

Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.

Karina V Pitthan (KV)

Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.

Maria A de Miranda Soares (MA)

Departament of Structural Biology, Molecular and Genetics, University of Ponta Grossa, Ponta Grossa, Paraná, Brazil.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH