Improved LiDAR Probabilistic Localization for Autonomous Vehicles Using GNSS.

GNSS Global Positioning System (GPS) LiDAR autonomous driving localization monte carlo particle filter

Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
02 Jun 2020
Historique:
received: 27 04 2020
revised: 25 05 2020
accepted: 30 05 2020
entrez: 6 6 2020
pubmed: 6 6 2020
medline: 6 6 2020
Statut: epublish

Résumé

This paper proposes a method that improves autonomous vehicles localization using a modification of probabilistic laser localization like Monte Carlo Localization (MCL) algorithm, enhancing the weights of the particles by adding Kalman filtered Global Navigation Satellite System (GNSS) information. GNSS data are used to improve localization accuracy in places with fewer map features and to prevent the kidnapped robot problems. Besides, laser information improves accuracy in places where the map has more features and GNSS higher covariance, allowing the approach to be used in specifically difficult scenarios for GNSS such as urban canyons. The algorithm is tested using KITTI odometry dataset proving that it improves localization compared with classic GNSS + Inertial Navigation System (INS) fusion and Adaptive Monte Carlo Localization (AMCL), it is also tested in the autonomous vehicle platform of the Intelligent Systems Lab (LSI), of the University Carlos III de of Madrid, providing qualitative results.

Identifiants

pubmed: 32498293
pii: s20113145
doi: 10.3390/s20113145
pmc: PMC7308877
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Références

Sensors (Basel). 2012 Dec 06;12(12):16802-37
pubmed: 23223080

Auteurs

Miguel Ángel de Miguel (MÁ)

Intelligent Systems Laboratory, Universidad Carlos III de Madrid, Av. de la Universidad, 30, 28911 Leganés, Madrid, Spain.

Fernando García (F)

Intelligent Systems Laboratory, Universidad Carlos III de Madrid, Av. de la Universidad, 30, 28911 Leganés, Madrid, Spain.

José María Armingol (JM)

Intelligent Systems Laboratory, Universidad Carlos III de Madrid, Av. de la Universidad, 30, 28911 Leganés, Madrid, Spain.

Classifications MeSH