A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa.
Animals
Anti-Bacterial Agents
/ pharmacology
Antimicrobial Cationic Peptides
/ chemistry
Cell Line
Cell Survival
/ drug effects
Cell Wall
/ drug effects
Erythrocytes
/ cytology
Hemolysis
/ drug effects
Humans
Lipopolysaccharides
/ metabolism
Mice
Microbial Sensitivity Tests
Microscopy, Electron, Transmission
Protein Binding
Pseudomonas aeruginosa
/ drug effects
Toll-Like Receptors
/ metabolism
Cathelicidins
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 06 2020
04 06 2020
Historique:
received:
03
01
2020
accepted:
07
05
2020
entrez:
6
6
2020
pubmed:
6
6
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Antimicrobial peptides (AMPs) are promising alternatives to classical antibiotics for the treatment of drug-resistant infections. Due to their versatility and unlimited sequence space, AMPs can be rationally designed by modulating physicochemical determinants to favor desired biological parameters and turned into novel therapeutics. In this study, we utilized key structural and physicochemical parameters, in combination with rational engineering, to design novel short α-helical hybrid peptides inspired by the well-known natural peptides, cathelicidin and aurein. By comparing homologous sequences and abstracting the conserved residue type, sequence templates of cathelicidin (P0) and aurein (A0) were obtained. Two peptide derivatives, P7 and A3, were generated by amino acid substitution based on their residue composition and distribution. In order to enhance antimicrobial activity, a hybrid analog of P7A3 was designed. The results demonstrated that P7A3 had higher antibacterial activity than the parental peptides with unexpectedly high hemolytic activity. Strikingly, C-terminal truncation of hybrid peptides containing only the α-helical segment (PA-18) and shorter derivatives confer potent antimicrobial activity with reduced hemolytic activity in a length-dependent manner. Among all, PA-13, showed remarkable broad-spectrum antibacterial activity, especially against Pseudomonas aeruginosa with no toxicity. PA-13 maintained antimicrobial activity in the presence of physiological salts and displayed rapid binding and penetration activity which resulted in membrane depolarization and permeabilization. Moreover, PA-13 showed an anti-inflammatory response via lipopolysaccharide (LPS) neutralization with dose-dependent, inhibiting, LPS-mediated Toll-like receptor activation. This study revealed the therapeutic potency of a novel hybrid peptide, and supports the use of rational design in development of new antibacterial agents.
Identifiants
pubmed: 32499514
doi: 10.1038/s41598-020-65688-5
pii: 10.1038/s41598-020-65688-5
pmc: PMC7272617
doi:
Substances chimiques
Anti-Bacterial Agents
0
Antimicrobial Cationic Peptides
0
Lipopolysaccharides
0
Toll-Like Receptors
0
aurein 1.2 peptide
0
Cathelicidins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9117Références
Rossolini, G. M., Arena, F., Pecile, P. & Pollini, S. Update on the antibiotic resistance crisis. Curr Opin Pharmacol 18, 56–60, https://doi.org/10.1016/j.coph.2014.09.006 (2014).
pubmed: 25254623
World Health Organization. Antimicrobial Resistance: Global Report on Surveillance 2014. (2014) Available at, http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf (Date of access: 24/02/2018).
Zhang, L. J. & Gallo, R. L. Antimicrobial peptides. Curr Biol 26, R14–19, https://doi.org/10.1016/j.cub.2015.11.017 (2016).
pubmed: 26766224
Huang, Y., Huang, J. & Chen, Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1, 143–152, https://doi.org/10.1007/s13238-010-0004-3 (2010).
pubmed: 21203984
pmcid: 4875170
Waghu, F. H. et al. Designing Antibacterial Peptides with Enhanced Killing Kinetics. Front Microbiol 9, 325, https://doi.org/10.3389/fmicb.2018.00325 (2018).
pubmed: 29527201
pmcid: 5829097
Li, J. et al. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci 11, 73, https://doi.org/10.3389/fnins.2017.00073 (2017).
pubmed: 28261050
pmcid: 5306396
Zelezetsky, I. & Tossi, A. Alpha-helical antimicrobial peptides–using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta 1758, 1436–1449, https://doi.org/10.1016/j.bbamem.2006.03.021 (2006).
pubmed: 16678118
Lv, Y. et al. Antimicrobial properties and membrane-active mechanism of a potential alpha-helical antimicrobial derived from cathelicidin PMAP-36. Plos One 9, e86364, https://doi.org/10.1371/journal.pone.0086364 (2014).
pubmed: 24466055
pmcid: 3897731
Hall, K. & Aguilar, M. I. Surface plasmon resonance spectroscopy for studying the membrane binding of antimicrobial peptides. Methods Mol Biol 627, 213–223, https://doi.org/10.1007/978-1-60761-670-2_14 (2010).
pubmed: 20217624
Yu, H. et al. Identification and polymorphism discovery of the cathelicidins, Lf-CATHs in ranid amphibian (Limnonectes fragilis). Febs j 280, 6022–6032, https://doi.org/10.1111/febs.12521 (2013).
pubmed: 24028327
Kosciuczuk, E. M. et al. Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39, 10957–10970, https://doi.org/10.1007/s11033-012-1997-x (2012).
pubmed: 23065264
pmcid: 3487008
Bals, R., Weiner, D. J., Moscioni, A. D., Meegalla, R. L. & Wilson, J. M. Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 67, 6084–6089 (1999).
pubmed: 10531270
pmcid: 96996
Conlon, J. M. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 68, 2303–2315, https://doi.org/10.1007/s00018-011-0720-8 (2011).
pubmed: 21560068
Konig, E., Bininda-Emonds, O. R. & Shaw, C. The diversity and evolution of anuran skin peptides. Peptides 63, 96–117, https://doi.org/10.1016/j.peptides.2014.11.003 (2015).
pubmed: 25464160
Pan, Y. L. et al. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J 92, 2854–2864, https://doi.org/10.1529/biophysj.106.097238 (2007).
pubmed: 17259271
pmcid: 1831713
Rozek, T. et al. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis the solution structure of aurein 1.2. Eur J Biochem 267, 5330–5341, https://doi.org/10.1046/j.1432-1327.2000.01536.x (2000).
pubmed: 10951191
Aoki, W. & Ueda, M. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics. Pharmaceuticals (Basel) 6, 1055–1081, https://doi.org/10.3390/ph6081055 (2013).
Hilpert, K. et al. Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem Biol 13, 1101–1107, https://doi.org/10.1016/j.chembiol.2006.08.014 (2006).
pubmed: 17052614
Liu, Y., Xia, X., Xu, L. & Wang, Y. Design of hybrid beta-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Biomaterials 34, 237–250, https://doi.org/10.1016/j.biomaterials.2012.09.032 (2013).
pubmed: 23046754
Ong, Z. Y., Wiradharma, N. & Yang, Y. Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev 78, 28–45, https://doi.org/10.1016/j.addr.2014.10.013 (2014).
pubmed: 25453271
Kiattiburut, W. et al. Antimicrobial peptide LL-37 and its truncated forms, GI-20 and GF-17, exert spermicidal effects and microbicidal activity against Neisseria gonorrhoeae. Hum Reprod 33, 2175–2183, https://doi.org/10.1093/humrep/dey315 (2018).
pubmed: 30357408
pmcid: 6238367
Xu, W., Zhu, X., Tan, T., Li, W. & Shan, A. Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity. Plos One 9, e98935, https://doi.org/10.1371/journal.pone.0098935 (2014).
pubmed: 24945359
pmcid: 4063695
Fox, M. A., Thwaite, J. E., Ulaeto, D. O., Atkins, T. P. & Atkins, H. S. Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Peptides 33, 197–205, https://doi.org/10.1016/j.peptides.2012.01.013 (2012).
pubmed: 22289499
Steinberg, D. A. et al. Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41, 1738–1742 (1997).
pubmed: 9257752
pmcid: 163996
Andrews, J. M. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48 Suppl 1, 5–16, https://doi.org/10.1093/jac/48.suppl_1.5 (2001) MBC.
pubmed: 11420333
Stark, M., Liu, L. P. & Deber, C. M. Cationic hydrophobic peptides with antimicrobial activity. Antimicrob Agents Chemother 46, 3585–3590, https://doi.org/10.1128/aac.46.11.3585-3590.2002 (2002).
pubmed: 12384369
pmcid: 128737
Zhang, S. K. et al. Design of an alpha-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 6, 27394, https://doi.org/10.1038/srep27394 (2016).
pubmed: 27271216
pmcid: 4897634
Jindal, H. M. et al. Antimicrobial Activity of Novel Synthetic Peptides Derived from Indolicidin and Ranalexin against Streptococcus pneumoniae. Plos One 10, e0128532, https://doi.org/10.1371/journal.pone.0128532 (2015).
pubmed: 26046345
pmcid: 4457802
Rabanal, F. et al. A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity. Sci Rep 5, 10558, https://doi.org/10.1038/srep10558 (2015).
pubmed: 26024044
pmcid: 4603705
Torcato, I. M. et al. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochim Biophys Acta 1828, 944–955, https://doi.org/10.1016/j.bbamem.2012.12.002 (2013).
pubmed: 23246973
Taylor, P. K., Yeung, A. T. & Hancock, R. E. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol 191, 121–130, https://doi.org/10.1016/j.jbiotec.2014.09.003 (2014).
pubmed: 25240440
Breidenstein, E. B., de la Fuente-Nunez, C. & Hancock, R. E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19, 419–426, https://doi.org/10.1016/j.tim.2011.04.005 (2011).
pubmed: 21664819
Ventola, C. L. The antibiotic resistance crisis: part 1: causes and threats. P t 40, 277–283 (2015).
pubmed: 25859123
pmcid: 4378521
Boman, H. G. Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254, 197–215, https://doi.org/10.1046/j.1365-2796.2003.01228.x (2003).
pubmed: 12930229
Li, Y., Xiang, Q., Zhang, Q., Huang, Y. & Su, Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37, 207–215, https://doi.org/10.1016/j.peptides.2012.07.001 (2012).
pubmed: 22800692
Kumar, P., Kizhakkedathu, J. N. & Straus, S. K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the cctivity and biocompatibility in vivo. Biomolecules 8, https://doi.org/10.3390/biom8010004 (2018).
pmcid: 5871973
Boland, M. P. & Separovic, F. Membrane interactions of antimicrobial peptides from Australian tree frogs. Biochim Biophys Acta 1758, 1178–1183, https://doi.org/10.1016/j.bbamem.2006.02.010 (2006).
pubmed: 16580625
Qu, P. et al. The central hinge link truncation of the antimicrobial peptide Fowlicidin-3 enhances its cell selectivity without antibacterial activity loss. Antimicrob Agents Chemother 60, 2798–2806, https://doi.org/10.1128/aac.02351-15 (2016).
pubmed: 26902768
pmcid: 4862537
Takahashi, D., Shukla, S. K., Prakash, O. & Zhang, G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92, 1236–1241, https://doi.org/10.1016/j.biochi.2010.02.023 (2010).
pubmed: 20188791
Teixeira, V., Feio, M. J. & Bastos, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51, 149–177, https://doi.org/10.1016/j.plipres.2011.12.005 (2012).
pubmed: 22245454
Huang, J. et al. Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an alpha-helical antibacterial peptide against bacteria. Peptides 32, 1488–1495, https://doi.org/10.1016/j.peptides.2011.05.023 (2011).
pubmed: 21664394
Aquila, M., Benedusi, M., Koch, K. W., Dell’Orco, D. & Rispoli, G. Divalent cations modulate membrane binding and pore formation of a potent antibiotic peptide analog of alamethicin. Cell Calcium 53, 180–186, https://doi.org/10.1016/j.ceca.2012.11.012 (2013).
pubmed: 23261317
Yu, H.-Y. et al. Easy strategy to increase salt resistance of antimicrobial peptides. Antimicrob Agents Chemother 55, 4918–4921, https://doi.org/10.1128/AAC.00202-11 (2011).
pubmed: 21768519
pmcid: 3186977
Chou, S. et al. Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomater. Sci 7, 2394–2409, https://doi.org/10.1039/C9BM00044E (2019).
pubmed: 30919848
Chou, S. et al. Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomater. Sci 7, 2394–2409, https://doi.org/10.1039/C9BM00044E (2019).
pubmed: 30919848
Hedegaard, S. F. et al. Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Sci. Rep 8, 6327–6327, https://doi.org/10.1038/s41598-018-24154-z (2018).
pubmed: 29679078
pmcid: 5910404
Erridge, C., Bennett-Guerrero, E. & Poxton, I. R. Structure and function of lipopolysaccharides. Microbes Infect 4, 837–851 (2002).
pubmed: 12270731
Sun, Y. & Shang, D. Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation. Mediators Inflamm 2015, 167572, https://doi.org/10.1155/2015/167572 (2015).
pubmed: 26612970
pmcid: 4647054
Yang, L. et al. Antibacterial Peptide BSN-37 Kills Extra- and Intra-Cellular Salmonella enterica Serovar Typhimurium by a Nonlytic Mode of Action. Front Microbiol 11, https://doi.org/10.3389/fmicb.2020.00174 (2020).
Hirt, H. & Gorr, S.-U. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother 57, 4903–4910, https://doi.org/10.1128/AAC.00311-13 (2013).
pubmed: 23917321
pmcid: 3811403
Abdolhosseini, M., Nandula, S. R., Song, J., Hirt, H. & Gorr, S. U. Lysine substitutions convert a bacterial-agglutinating peptide into a bactericidal peptide that retains anti-lipopolysaccharide activity and low hemolytic activity. Peptides 35, 231–238, https://doi.org/10.1016/j.peptides.2012.03.017 (2012).
pubmed: 22484285
pmcid: 3356437
Balhara, V., Schmidt, R., Gorr, S.-U. & DeWolf, C. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K. Biochim. Biophys. Acta 1828, 2193–2203, https://doi.org/10.1016/j.bbamem.2013.05.027 (2013).
pubmed: 23747365
Cirioni, O. et al. Therapeutic efficacy of buforin II and rifampin in a rat model of Acinetobacter baumannii sepsis. Crit Care Med 37, 1403–1407, https://doi.org/10.1097/CCM.0b013e31819c3e22 (2009).
pubmed: 19318826
Price, R. L. et al. In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5. Plos One 14, e0210508, https://doi.org/10.1371/journal.pone.0210508 (2019).
pubmed: 30625198
pmcid: 6326515