A harmonized global nighttime light dataset 1992-2018.


Journal

Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192

Informations de publication

Date de publication:
04 06 2020
Historique:
received: 20 01 2020
accepted: 01 05 2020
entrez: 6 6 2020
pubmed: 6 6 2020
medline: 6 6 2020
Statut: epublish

Résumé

Nighttime light (NTL) data from the Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership satellite provide a great opportunity for monitoring human activities from regional to global scales. Despite the valuable records of nightscape from DMSP (1992-2013) and VIIRS (2012-2018), the potential of the historical archive of NTL observations has not been fully explored because of the severe inconsistency between DMSP and VIIRS. In this study, we generated an integrated and consistent NTL dataset at the global scale by harmonizing the inter-calibrated NTL observations from the DMSP data and the simulated DMSP-like NTL observations from the VIIRS data. The generated global DMSP NTL time-series data (1992-2018) show consistent temporal trends. This temporally extended DMSP NTL dataset provides valuable support for various studies related to human activities such as electricity consumption and urban extent dynamics.

Identifiants

pubmed: 32499523
doi: 10.1038/s41597-020-0510-y
pii: 10.1038/s41597-020-0510-y
pmc: PMC7272434
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

168

Références

Li, X. & Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: a review. Int. J. Remote. Sens. 38, 1–17 (2017).
Shao, X. et al. Radiometric calibration of DMSP-OLS sensor using VIIRS day/night band. In Earth Observing Missions and Sensors: Development, Implementation, and Characterization III. (eds Xiaoxiong Xiong & Haruhisa Shimoda) 92640A (International Society for Optics and Photonics, 2014).
Yang, C. et al. A Spatial-Socioeconomic Urban Development Status Curve from NPP-VIIRS Nighttime Light Data. Remote. Sens. 11, 2398 (2019).
doi: 10.3390/rs11202398
Sullivan, W. T. III. A 10 km resolution image of the entire night-time Earth based on cloud-free satellite photographs in the 400–1100 nm band. Remote. Sens. 10, 1–5 (1989).
doi: 10.1080/01431168908903843
Miller, S. D. et al. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. P Natl Acad. Sci. USA 109, 15706–15711 (2012).
doi: 10.1073/pnas.1207034109
Elvidge, C. D. et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote. Sens. 18, 1373–1379 (1997).
doi: 10.1080/014311697218485
Doll, C. N. & Pachauri, S. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Policy 38, 5661–5670 (2010).
doi: 10.1016/j.enpol.2010.05.014
de Miguel, A. S., Zamorano, J., Castaño, J. G. & Pascual, S. Evolution of the energy consumed by street lighting in Spain estimated with DMSP-OLS data. J. Quant. Spectrosc. Radiat. Transf. 139, 109–117 (2014).
doi: 10.1016/j.jqsrt.2013.11.017
Isobe, S. & Hamamura, S. Monitoring light energy loss estimated by the DMSP satellites. Mem. della Società astronomica Ital. 71, 131 (2000).
Chen, X. & Nordhaus, W. D. Using luminosity data as a proxy for economic statistics. P Natl Acad. Sci. USA 108, 8589–8594 (2011).
doi: 10.1073/pnas.1017031108
Shi, K. et al. Modeling and mapping total freight traffic in China using NPP-VIIRS nighttime light composite data. GIScience Remote. Sens. 52, 274–289 (2015).
doi: 10.1080/15481603.2015.1022420
Falchi, F. & Cinzano, P. Maps of artificial sky brightness and upward emission in Italy from DMSP satellite measurements. arXiv preprint astro-ph/9811234 (1998).
Cinzano, P., Falchi, F., Elvidge, C. & Baugh, K. The artificial sky brightness in Europe derived from DMSP satellite data. In Symposium-International Astronomical Union. 95–102 (Cambridge University Press).
Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).
doi: 10.1126/sciadv.1600377
Cinzano, P., Falchi, F. & Elvidge, C. D. The first world atlas of the artificial night sky brightness. Monthly Not. R. Astronomical Soc. 328, 689–707 (2001).
doi: 10.1046/j.1365-8711.2001.04882.x
Bennie, J., Duffy, J. P., Davies, T. W., Correa-Cano, M. E. & Gaston, K. J. Global trends in exposure to light pollution in natural terrestrial ecosystems. Remote. Sens. 7, 2715–2730 (2015).
doi: 10.3390/rs70302715
Zhou, Y., Li, X., Asrar, G. R., Smith, S. J. & Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote. Sens. Env. 219, 206–220 (2018).
doi: 10.1016/j.rse.2018.10.015
Zhou, Y. et al. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote. Sens. Env. 147, 173–185 (2014).
doi: 10.1016/j.rse.2014.03.004
Levin, N. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote. Sens. Environ. 193, 150–164 (2017).
doi: 10.1016/j.rse.2017.03.003
Li, X., Zhou, Y., Eom, J., Yu, S. & Asrar, G. R. Projecting global urban area growth through 2100 based on historical time‐series data and future Shared Socioeconomic Pathways. Earth’s Future 7, 351–362 (2019).
doi: 10.1029/2019EF001152
Li, X., Gong, P. & Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote. Sens. Environ. 166, 78–90 (2015).
doi: 10.1016/j.rse.2015.06.007
Li, X., Li, D., Xu, H. & Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote. Sens. 38, 5934–5951 (2017).
doi: 10.1080/01431161.2017.1331476
Zheng, Q., Weng, Q. & Wang, K. Developing a new cross-sensor calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries. ISPRS-J. Photogramm. Remote. Sens. 153, 36–47 (2019).
doi: 10.1016/j.isprsjprs.2019.04.019
Zhao, M. et al. Building a Series of Consistent Night-Time Light Data (1992–2018) in Southeast Asia by Integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. Geosci. Remote. Sens. 58, 1843–1856 (2019).
doi: 10.1109/TGRS.2019.2949797
Zhu, X., Ma, M., Yang, H. & Ge, W. Modeling the spatiotemporal dynamics of gross domestic product in China using extended temporal coverage nighttime light data. Remote. Sens. 9, 626 (2017).
doi: 10.3390/rs9060626
Li, X. & Zhou, Y. A Stepwise Calibration of Global DMSP/OLS Stable Nighttime Light Data (1992–2013). Remote. Sens. 9, 637 (2017).
doi: 10.3390/rs9060637
Elvidge, C. D. et al. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote. Sens. Env. 68, 77–88 (1999).
doi: 10.1016/S0034-4257(98)00098-4
Zhang, Q., Pandey, B. & Seto, K. C. A Robust Method to Generate a Consistent Time Series From DMSP/OLS Nighttime Light Data. IEEE Trans. Geosci. Remote. Sens. 54, 5821–5831 (2016).
doi: 10.1109/TGRS.2016.2572724
Wu, J., He, S., Peng, J., Li, W. & Zhong, X. Intercalibration of DMSP-OLS night-time light data by the invariant region method. Int. J. Remote. Sens. 34, 7356–7368 (2013).
doi: 10.1080/01431161.2013.820365
Liu, Z., He, C., Zhang, Q., Huang, Q. & Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban. Plan. 106, 62–72 (2012).
doi: 10.1016/j.landurbplan.2012.02.013
Cinzano, P., Falchi, F. & Elvidge, C. Recent progresses on a second world atlas of the night-sky brightness, LPTRAN/LPDART realistic models, tomography of light pollution, accurate validation methods and extended satellite data analysis. In Proc. Starlight 2007 Conference, La Palma, Spain. 19–20 (2007).
Zhao, M. et al. Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives. Remote. Sens. 11, 1971 (2019).
doi: 10.3390/rs11171971
Elvidge, C. et al. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies 2, 595 (2009).
doi: 10.3390/en20300595
Román, M. O. et al. NASA’s Black Marble nighttime lights product suite. Remote. Sens. Env. 210, 113–143 (2018).
doi: 10.1016/j.rse.2018.03.017
Ma, T., Zhou, C., Pei, T., Haynie, S. & Fan, J. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote. Sens. Lett. 5, 165–174 (2014).
doi: 10.1080/2150704X.2014.890758
Kyba, C. C. et al. Worldwide variations in artificial skyglow. Sci. Rep. 5, 8409 (2015).
doi: 10.1038/srep08409
Yu, B. et al. Urban built-up area extraction from log-transformed NPP-VIIRS nighttime light composite data. IEEE Geosci. Remote. Sens. Lett. 15, 1279–1283 (2018).
doi: 10.1109/LGRS.2018.2830797
Li, X., Zhou, Y., Zhao, M. & Zhao, X. Harmonization of DMSP and VIIRS nighttime light data from 1992–2018 at the global scale. figshare https://doi.org/10.6084/m9.figshare.9828827.v2 (2020).
Sutton, P. C. A scale-adjusted measure of “Urban sprawl” using nighttime satellite imagery. Remote. Sens. Env. 86, 353–369 (2003).
doi: 10.1016/S0034-4257(03)00078-6
Townsend, A. C. & Bruce, D. A. The use of night-time lights satellite imagery as a measure of Australia’s regional electricity consumption and population distribution. Int. J. Remote. Sens. 31, 4459–4480 (2010).
doi: 10.1080/01431160903261005
Davies, T. W. & Smyth, T. Why artificial light at night should be a focus for global change research in the 21st century. Glob. Change Biol. 24, 872–882 (2018).
doi: 10.1111/gcb.13927
Da Silva, A., Valcu, M. & Kempenaers, B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B: Biol. Sci. 370, 1–9 (2015).
doi: 10.1098/rstb.2014.0126

Auteurs

Xuecao Li (X)

Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011, USA.

Yuyu Zhou (Y)

Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011, USA. yuyuzhou@iastate.edu.

Min Zhao (M)

Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011, USA.

Xia Zhao (X)

Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, 50011, USA.

Classifications MeSH