Spectral and spatial shaping of laser-driven proton beams using a pulsed high-field magnet beamline.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 06 2020
Historique:
received: 18 10 2019
accepted: 11 05 2020
entrez: 6 6 2020
pubmed: 6 6 2020
medline: 6 6 2020
Statut: epublish

Résumé

Intense laser-driven proton pulses, inherently broadband and highly divergent, pose a challenge to established beamline concepts on the path to application-adapted irradiation field formation, particularly for 3D. Here we experimentally show the successful implementation of a highly efficient (50% transmission) and tuneable dual pulsed solenoid setup to generate a homogeneous (laterally and in depth) volumetric dose distribution (cylindrical volume of 5 mm diameter and depth) at a single pulse dose of 0.7 Gy via multi-energy slice selection from the broad input spectrum. The experiments were conducted at the Petawatt beam of the Dresden Laser Acceleration Source Draco and were aided by a predictive simulation model verified by proton transport studies. With the characterised beamline we investigated manipulation and matching of lateral and depth dose profiles to various desired applications and targets. Using an adapted dose profile, we performed a first proof-of-technical-concept laser-driven proton irradiation of volumetric in-vitro tumour tissue (SAS spheroids) to demonstrate concurrent operation of laser accelerator, beam shaping, dosimetry and irradiation procedure of volumetric biological samples.

Identifiants

pubmed: 32499539
doi: 10.1038/s41598-020-65775-7
pii: 10.1038/s41598-020-65775-7
pmc: PMC7272427
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9118

Commentaires et corrections

Type : ErratumIn

Références

Daido, H., Nishiuchi, M. & Pirozhkov, A. S. Review of laser-driven ion sources and their applications. Reports on Progress in Physics 75, 056401, https://doi.org/10.1088/0034-4885/75/5/056401 (2012).
doi: 10.1088/0034-4885/75/5/056401 pubmed: 22790586
Macchi, A., Borghesi, M. & Passoni, M. Ion acceleration by superintense laser-plasma interaction. Reviews of Modern Physics 85, 751–793, https://doi.org/10.1103/RevModPhys.85.751 (2013).
doi: 10.1103/RevModPhys.85.751
Cowan, T. E. et al. Ultralow Emittance, Multi-MeV Proton Beams from a Laser Virtual-Cathode Plasma Accelerator. Physical Review Letters 92, 204801, https://doi.org/10.1103/PhysRevLett.92.204801 (2004).
doi: 10.1103/PhysRevLett.92.204801 pubmed: 15169357
Patel, P. et al. Isochoric Heating of Solid-Density Matter with an Ultrafast Proton Beam. Physical Review Letters 91, 125004, https://doi.org/10.1103/PhysRevLett.91.125004 (2003).
doi: 10.1103/PhysRevLett.91.125004 pubmed: 14525369
Romagnani, L. et al. Dynamics of Electric Fields Driving the Laser Acceleration of Multi-MeV Protons. Physical Review Letters 95, 195001, https://doi.org/10.1103/PhysRevLett.95.195001 (2005).
doi: 10.1103/PhysRevLett.95.195001 pubmed: 16383987
Dromey, B. et al. Picosecond metrology of laser-driven proton bursts. Nature Communications 7, 10642, https://doi.org/10.1038/ncomms10642 (2016).
doi: 10.1038/ncomms10642 pubmed: 26861592 pmcid: 4749984
Barberio, M., Veltri, S., Scisciò, M. & Antici, P. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage. Scientific Reports 7, 40415, https://doi.org/10.1038/srep40415 (2017).
doi: 10.1038/srep40415 pubmed: 28266496 pmcid: 5339728
Antici, P. et al. A compact post-acceleration scheme for laser-generated protons. Physics of Plasmas 18, 073103, https://doi.org/10.1063/1.3574361 (2011).
doi: 10.1063/1.3574361
Busold, S. et al. Shaping laser accelerated ions for future applications – The LIGHT collaboration. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 740, 94–98, https://doi.org/10.1016/J.NIMA.2013.10.025 (2014).
doi: 10.1016/J.NIMA.2013.10.025
Busold, S. et al. Towards highest peak intensities for ultra-short MeV-range ion bunches. Scientific Reports 5, 12459, https://doi.org/10.1038/srep12459 (2015).
doi: 10.1038/srep12459 pubmed: 26212024 pmcid: 4515640
Yogo, A. et al. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Applied Physics Letters 94, https://doi.org/10.1063/1.3126452 (2009).
Kraft, S. D. et al. Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New Journal of Physics 12, 085003, https://doi.org/10.1088/1367-2630/12/8/085003 (2010).
doi: 10.1088/1367-2630/12/8/085003
Yogo, A. et al. Development of laser-driven quasi-monoenergetic proton beam line for radiobiology. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 653, 189–192, https://doi.org/10.1016/j.nima.2010.12.016 (2011).
doi: 10.1016/j.nima.2010.12.016
Bin, J. et al. A laser-driven nanosecond proton source for radiobiological studies. Applied Physics Letters 101, 243701, https://doi.org/10.1063/1.4769372 (2012).
doi: 10.1063/1.4769372
Doria, D. et al. Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s. AIP Advances 2, 011209, https://doi.org/10.1063/1.3699063 (2012).
doi: 10.1063/1.3699063
Zeil, K. et al. Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses. Applied Physics B 110, 437–444, https://doi.org/10.1007/s00340-012-5275-3 (2013).
doi: 10.1007/s00340-012-5275-3
Hanton, F. et al. DNA DSB Repair Dynamics following Irradiation with Laser-Driven Protons at Ultra-High Dose Rates. Scientific Reports 9, 4471, https://doi.org/10.1038/s41598-019-40339-6 (2019).
doi: 10.1038/s41598-019-40339-6 pubmed: 30872656 pmcid: 6418121
Bayart, E. et al. Fast dose fractionation using ultra-short laser accelerated proton pulses can increase cancer cell mortality, which relies on functional PARP1 protein. Scientific Reports 9, 10132, https://doi.org/10.1038/s41598-019-46512-1 (2019).
doi: 10.1038/s41598-019-46512-1 pubmed: 31300704 pmcid: 6626007
Masood, U. et al. A compact solution for ion beam therapy with laser accelerated protons. Applied Physics B 117, 41–52, https://doi.org/10.1007/s00340-014-5796-z (2014).
doi: 10.1007/s00340-014-5796-z
Danson, C., Hillier, D., Hopps, N. & Neely, D. Petawatt class lasers worldwide. High Power Laser Science and Engineering 3, e3, https://doi.org/10.1017/hpl.2014.52 (2015).
doi: 10.1017/hpl.2014.52
Schramm, U. et al. First results with the novel petawatt laser acceleration facility in Dresden. Journal of Physics: Conference Series 874, 012028, https://doi.org/10.1088/1742-6596/874/1/012028 (2017).
doi: 10.1088/1742-6596/874/1/012028
Gales, S. et al. The extreme light infrastructure—nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Reports on Progress in Physics 81, 094301, https://doi.org/10.1088/1361-6633/aacfe8 (2018).
doi: 10.1088/1361-6633/aacfe8 pubmed: 29952755
Qiao, B. et al. Revisit on ion acceleration mechanisms in solid targets driven by intense laser pulses. Plasma Physics and Controlled Fusion 61, 014039, https://doi.org/10.1088/1361-6587/aaf18e (2019).
doi: 10.1088/1361-6587/aaf18e
Buffechoux, S. et al. Hot Electrons Transverse Refluxing in Ultraintense Laser-Solid Interactions. Physical Review Letters 105, 015005, https://doi.org/10.1103/PhysRevLett.105.015005 (2010).
doi: 10.1103/PhysRevLett.105.015005 pubmed: 20867457
Zeil, K. et al. Robust energy enhancement of ultrashort pulse laser accelerated protons from reduced mass targets. Plasma Physics and Controlled Fusion 56, 084004, https://doi.org/10.1088/0741-3335/56/8/084004 (2014).
doi: 10.1088/0741-3335/56/8/084004
Obst, L. et al. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets. Scientific Reports 7, 10248, https://doi.org/10.1038/s41598-017-10589-3 (2017).
doi: 10.1038/s41598-017-10589-3 pubmed: 28860614 pmcid: 5579044
Prencipe, I. et al. Targets for high repetition rate laser facilities: needs, challenges and perspectives. High Power Laser Science and Engineering 5, e17, https://doi.org/10.1017/hpl.2017.18 (2017).
doi: 10.1017/hpl.2017.18
Hilz, P. et al. Isolated proton bunch acceleration by a petawatt laser pulse. Nature Communications 9, 423, https://doi.org/10.1038/s41467-017-02663-1 (2018).
doi: 10.1038/s41467-017-02663-1 pubmed: 29379024 pmcid: 5788983
Zeil, K. et al. Direct observation of prompt pre-thermal laser ion sheath acceleration. Nature Communications 3, https://doi.org/10.1038/ncomms1883 (2012).
Snavely, R. A. et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Physical Review Letters 85, 2945–2948, https://doi.org/10.1103/PhysRevLett.85.2945 (2000).
doi: 10.1103/PhysRevLett.85.2945 pubmed: 11005974
Wagner, F. et al. Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH 2 Targets. Physical Review Letters 116, 205002, https://doi.org/10.1103/PhysRevLett.116.205002 (2016).
doi: 10.1103/PhysRevLett.116.205002 pubmed: 27258872
Higginson, A. et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nature Communications 9, 724, https://doi.org/10.1038/s41467-018-03063-9 (2018).
doi: 10.1038/s41467-018-03063-9 pubmed: 29463872 pmcid: 5820283
Nishiuchi, M. et al. Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets. Applied Physics Letters 94, 061107, https://doi.org/10.1063/1.3078291 (2009).
doi: 10.1063/1.3078291
Romano, F. et al. The ELIMED transport and dosimetry beamline for laser-driven ion beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 829, 153–158, https://doi.org/10.1016/J.NIMA.2016.01.064 (2016).
doi: 10.1016/J.NIMA.2016.01.064
Pommarel, L. et al. Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments. Physical Review Accelerators and Beams 20, 032801, https://doi.org/10.1103/PhysRevAccelBeams.20.032801 (2017).
doi: 10.1103/PhysRevAccelBeams.20.032801
Zhu, J. et al. Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport. Physical Review Accelerators and Beams 22, 061302, https://doi.org/10.1103/PhysRevAccelBeams.22.061302 (2019).
doi: 10.1103/PhysRevAccelBeams.22.061302
Toncian, T. et al. Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons. Science (New York, N.Y.) 312, 410–3, https://doi.org/10.1126/science.1124412 (2006).
doi: 10.1126/science.1124412
Kar, S. et al. Guided post-acceleration of laser-driven ions by a miniature modular structure. Nature Communications 7, 10792, https://doi.org/10.1038/ncomms10792 (2016).
doi: 10.1038/ncomms10792 pubmed: 27089200 pmcid: 4837447
Obst-Huebl, L. et al. All-optical structuring of laser-driven proton beam profiles. Nature Communications 9, 5292, https://doi.org/10.1038/s41467-018-07756-z (2018).
doi: 10.1038/s41467-018-07756-z pubmed: 30546015 pmcid: 6294339
Eichner, T. et al. Miniature magnetic devices for laser-based, table-top free-electron lasers. Physical Review Special Topics - Accelerators and Beams 10, 082401, https://doi.org/10.1103/PhysRevSTAB.10.082401 (2007).
doi: 10.1103/PhysRevSTAB.10.082401
Ter-Avetisyan, S., Schnürer, M., Polster, R., Nickles, P. & Sandner, W. First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser and Particle Beams 26, 637–642, https://doi.org/10.1017/S0263034608000712 (2008).
doi: 10.1017/S0263034608000712
Schollmeier, M. et al. Controlled Transport and Focusing of Laser-Accelerated Protons with Miniature Magnetic Devices. Physical Review Letters 101, 055004, https://doi.org/10.1103/PhysRevLett.101.055004 (2008).
doi: 10.1103/PhysRevLett.101.055004 pubmed: 18764401
Burris-Mog, T. et al. Laser accelerated protons captured and transported by a pulse power solenoid. Physical Review Special Topics - Accelerators and Beams 14, 121301, https://doi.org/10.1103/PhysRevSTAB.14.121301 (2011).
doi: 10.1103/PhysRevSTAB.14.121301
Busold, S. et al. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV. Physical Review Special Topics - Accelerators and Beams 17, 031302, https://doi.org/10.1103/PhysRevSTAB.17.031302 (2014).
doi: 10.1103/PhysRevSTAB.17.031302
Jahn, D. et al. First application studies at the laser-driven LIGHT beamline: Improving proton beam homogeneity and imaging of a solid target. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 909, 173–176, https://doi.org/10.1016/J.NIMA.2018.02.026 (2018).
doi: 10.1016/J.NIMA.2018.02.026
Masood, U. et al. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams. Physics in Medicine & Biology 62, 5531–5555, https://doi.org/10.1088/1361-6560/aa7124 (2017).
doi: 10.1088/1361-6560/aa7124
Brüchner, K. et al. Establishment of a small animal tumour model for in vivo studies with low energy laser accelerated particles. Radiation Oncology 9, 57, https://doi.org/10.1186/1748-717X-9-57 (2014).
doi: 10.1186/1748-717X-9-57 pubmed: 24533586
Oppelt, M. et al. Comparison study of in vivo dose response to laser-driven versus conventional electron beam. Radiation and Environmental Biophysics 54, 155–166, https://doi.org/10.1007/s00411-014-0582-1 (2015).
doi: 10.1007/s00411-014-0582-1 pubmed: 25600561
Beyreuther, E. et al. An optimized small animal tumour model for experimentation with low energy protons. Plos one 12, e0177428, https://doi.org/10.1371/journal.pone.0177428 (2017).
doi: 10.1371/journal.pone.0177428 pubmed: 28545054 pmcid: 5436688
Zeil, K. et al. The scaling of proton energies in ultrashort pulse laser plasma acceleration. New Journal of Physics 12, https://doi.org/10.1088/1367-2630/12/4/045015 (2010).
Obst, L. et al. On-shot characterization of single plasma mirror temporal contrast improvement. Plasma Physics and Controlled Fusion 60, 054007, https://doi.org/10.1088/1361-6587/aab3bb (2018).
doi: 10.1088/1361-6587/aab3bb
Haffa, D. et al. I-BEAT: Ultrasonic method for online measurement of the energy distribution of a single ion bunch. Scientific Reports 9, 6714, https://doi.org/10.1038/s41598-019-42920-5 (2019).
doi: 10.1038/s41598-019-42920-5 pubmed: 31040311 pmcid: 6491586
Kumar, V. Understanding the focusing of charged particle beams in a solenoid magnetic field. American Journal of Physics 77, 737–741, https://doi.org/10.1119/1.3129242 (2009).
doi: 10.1119/1.3129242
Kroll, F. The study and development of pulsed high-field magnets for application in laser-plasma physics. Phd thesis, Technische Universität Dresden (2018).
Mironov, O. A. et al. Microminiature Hall Probes for Applications at Pulsed Magnetic Fields up to 87 Tesla. Journal of Low Temperature Physics 159, 315–318, https://doi.org/10.1007/s10909-009-0140-4 (2010).
doi: 10.1007/s10909-009-0140-4
Milluzzo, G. et al. A new energy spectrum reconstruction method for time-of-flight diagnostics of high-energy laser-driven protons. Review of Scientific Instruments 90, https://doi.org/10.1063/1.5082746 , 1812.01357 (2019).
Jahn, D. Development of fast diamond detectors for temporal profile measurements of short, intense ion bunches. Master’s thesis, TU Darmstadt (2015).
Brenner, D., Martel, M. & Hall, E. Fractionated regimens for stereotactic radiotherapy of recurrent tumors in the brain. International Journal of Radiation Oncology Biology Physics 21, 819–824, https://doi.org/10.1016/0360-3016(91)90703-7 (1991).
doi: 10.1016/0360-3016(91)90703-7
Nakagawa, T. & Yoda, K. A method for achieving variable widths of the spread-out Bragg peak using a ridge filter. Medical Physics 27, 712–715, https://doi.org/10.1118/1.598933 (2000).
doi: 10.1118/1.598933 pubmed: 10798693
Wilson, J. D., Hammond, E. M., Higgins, G. S. & Petersson, K. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold? Frontiers in Oncology 9, 1563, https://doi.org/10.3389/fonc.2019.01563 (2020).
doi: 10.3389/fonc.2019.01563 pubmed: 32010633 pmcid: 6979639
Wettengel, S. et al. Novel Thyristor-Based Pulsed Current Converter for a Medical Application - a Conceptual Introduction. In PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 1–6 (2018).
Gauthier, M. et al. High repetition rate, multi-MeV proton source from cryogenic hydrogen jets. Applied Physics Letters 111, 114102, https://doi.org/10.1063/1.4990487 (2017).
doi: 10.1063/1.4990487
De Loos, M. J. & Van Der Geer, S. B. General Particle Tracer: A new 3D code for accelerator and beamline design. In 5th European Particle Accelerator Conference, 1241 (1996).
Nürnberg, F. et al. Radiochromic film imaging spectroscopy of laser-accelerated proton beams. Review of Scientific Instruments 80, https://doi.org/10.1063/1.3086424 (2009).
Richter, C. et al. A dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons. Physics in Medicine and Biology 56, 1529–1543, https://doi.org/10.1088/0031-9155/56/6/002 (2011).
doi: 10.1088/0031-9155/56/6/002 pubmed: 21325708
Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L. A. Spheroid-based drug screen: considerations and practical approach. Nature Protocols 4, 309–324, https://doi.org/10.1038/nprot.2008.226 (2009).
doi: 10.1038/nprot.2008.226 pubmed: 19214182
Beyreuther, E., Lessmann, E., Pawelke, J. & Pieck, S. DNA double-strand break signalling: X-ray energy dependence of residual co-localised foci of γ-H2AX and 53BP1. International Journal of Radiation Biology 85, 1042–1050, https://doi.org/10.3109/09553000903232884 (2009).
doi: 10.3109/09553000903232884 pubmed: 19895281

Auteurs

Florian-Emanuel Brack (FE)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany. f.brack@hzdr.de.
Technische Universität Dresden, 01062, Dresden, Germany. f.brack@hzdr.de.

Florian Kroll (F)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.

Lennart Gaus (L)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
Technische Universität Dresden, 01062, Dresden, Germany.

Constantin Bernert (C)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
Technische Universität Dresden, 01062, Dresden, Germany.

Elke Beyreuther (E)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Thomas E Cowan (TE)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
Technische Universität Dresden, 01062, Dresden, Germany.

Leonhard Karsch (L)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Stephan Kraft (S)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.

Leoni A Kunz-Schughart (LA)

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany.

Elisabeth Lessmann (E)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.

Josefine Metzkes-Ng (J)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.

Lieselotte Obst-Huebl (L)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.

Jörg Pawelke (J)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Martin Rehwald (M)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
Technische Universität Dresden, 01062, Dresden, Germany.

Hans-Peter Schlenvoigt (HP)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.

Ulrich Schramm (U)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
Technische Universität Dresden, 01062, Dresden, Germany.

Manfred Sobiella (M)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.

Emília Rita Szabó (ER)

ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged, H-6728, Hungary.

Tim Ziegler (T)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.
Technische Universität Dresden, 01062, Dresden, Germany.

Karl Zeil (K)

Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.

Classifications MeSH