Evolution is a double-edged sword, not a silver bullet, to confront global change.

adaptation climate change contemporary evolution evolutionary trap maladaptation

Journal

Annals of the New York Academy of Sciences
ISSN: 1749-6632
Titre abrégé: Ann N Y Acad Sci
Pays: United States
ID NLM: 7506858

Informations de publication

Date de publication:
06 2020
Historique:
received: 01 10 2019
revised: 18 05 2020
accepted: 19 05 2020
pubmed: 6 6 2020
medline: 6 10 2020
entrez: 6 6 2020
Statut: ppublish

Résumé

Although there is considerable optimism surrounding adaptive evolutionary responses to global change, relatively little attention has been paid to maladaptation in this context. In this review, we consider how global change might lead populations to become maladapted. We further consider how populations can evolve to new optima, fail to evolve and therefore remain maladapted, or become further maladapted through trait-driven or eco-evo-driven mechanisms after being displaced from their fitness optima. Our goal is to stimulate thinking about evolution as a "double-edged sword" that comprises both adaptive and maladaptive responses, rather than as a "silver bullet" or a purely adaptive mechanism to combat global change. We conclude by discussing how a better appreciation of environmentally driven maladaptation and maladaptive responses might improve our current understanding of population responses to global change and our ability to forecast future responses.

Identifiants

pubmed: 32500534
doi: 10.1111/nyas.14410
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

38-51

Informations de copyright

© 2020 New York Academy of Sciences.

Références

Merilä, J. & A.P. Hendry. 2014. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7: 1-14.
Sgrò, C.M., J.S. Terblanche & A.A. Hoffmann. 2016. What can plasticity contribute to insect responses to climate change? Annu. Rev. Entomol. 61: 433-451.
Tomanek, L. 2010. Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. J. Exp. Biol. 213: 971-979.
Somero, G.N. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’ J. Exp. Biol. 213: 912-920.
Gunderson, A.R. & J.H. Stillman. 2015. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B 282: 20150401.
Sørensen, J.G., T.N. Kristensen & J. Overgaard. 2016. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change? Curr. Opin. Insect Sci. 17: 98-104.
Kinnison, M.T. & A.P. Hendry. 2001. The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica 112-113: 145-164.
Hendry, A.P. & M.T. Kinnison. 1999. Perspective: The pace of modern life: measuring rates of contemporary microevolution. Evolution 53: 1637-1653.
Reznick, D.N., J. Losos & J. Travis. 2019. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol. Lett. 22: 233-244.
Hendry, A.P., D.J. Schoen, M.E. Wolak, et al. 2018. The contemporary evolution of fitness. Annu. Rev. Ecol. Evol. Syst. 49: 457-476.
Brook, B.W., N.S. Sodhi & C.J.A. Bradshaw. 2008. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23: 453-460.
Hoffmann, A.A. & C.M. Sgrò. 2011. Climate change and evolutionary adaptation. Nature 470: 479-485.
Brady, S.P., D.I. Bolnick, A.L. Angert, et al. 2019. Causes of maladaptation. Evol. Appl. 12: 1229-1242.
Derry, A.M., D.J. Fraser, S.P. Brady, et al. 2019. Conservation through the lens of (mal)adaptation: concepts and meta-analysis. Evol. Appl. 12: 1287-1304.
Walters, R.J. & D. Berger. 2019. Implications of existing local (mal)adaptations for ecological forecasting under environmental change. Evol. Appl. 12: 1487-1502.
Carlson, S.M., C.J. Cunningham & P.A.H. Westley. 2014. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29: 521-530.
Diniz-Filho, J.A.F. & L.M. Bini. 2019. Will life find a way out? Evolutionary rescue and Darwinian adaptation to climate change. Perspect. Ecol. Conserv. 17: 117-121.
Gonzalez, A., O. Ronce, R. Ferriere, et al. 2013. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. B 368: 20120404.
Urban, M.C. 2015. Accelerating extinction risk from climate change. Science 348: 571-573.
Cahill, A.E., M.E. Aiello-Lammens, M.C. Fisher-Reid, et al. 2013. How does climate change cause extinction? Proc. R. Soc. B 280: 20121890.
Iknayan, K.J. & S.R. Beissinger. 2018. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl. Acad. Sci. USA 115: 8597-8602.
Riddell, E.A., E.Y. Roback, C.E. Wells, et al. 2019. Thermal cues drive plasticity of desiccation resistance in montane salamanders with implications for climate change. Nat. Commun. 10: 4091.
Beever, E.A., C. Ray, P.W. Mote, et al. 2010. Testing alternative models of climate-mediated extirpations. Ecol. Appl. 20: 164-178.
Visser, M.E., A.J. van Noordwijk, J.M. Tinbergen, et al. 1998. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B Biol. Sci. 265: 1867-1870.
McLaughlin, J.F., J.J. Hellmann, C.L. Boggs, et al. 2002. Climate change hastens population extinctions. Proc. Natl. Acad. Sci. USA 99: 6070-6074.
Harrington, R., I. Woiwod, T. Sparks, et al. 1999. Climate change and trophic interactions. Trends Ecol. Evol. 14: 146-150.
Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37: 637-669.
Renner, S.S. & C.M. Zohner. 2018. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49: 165-182.
Diamond, S.E. & R.A. Martin. 2020. Evolutionary consequences of the urban heat island. In Urban Evolutionary Biology. Oxford: Oxford University Press.
Kern, E.M.A. & R.B. Langerhans. 2019. Urbanization alters swimming performance of a stream fish. Front. Ecol. Evol. 6: 229.
Kern, E.M. & R.B. Langerhans. 2018. Urbanization drives contemporary evolution in stream fish. Glob. Change Biol. 24: 3791-3803.
Winchell, K.M., E.J. Carlen, A.R. Puente-Rolón, et al. 2018. Divergent habitat use of two urban lizard species. Ecol. Evol. 8: 25-35.
Winchell, K.M., R.G. Reynolds, S.R. Prado-Irwin, et al. 2016. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 70: 1009-1022.
Slabbekoorn, H. & M. Peet. 2003. Birds sing at a higher pitch in urban noise. Nature 424: 267-267.
Halfwerk, W., S. Bot, J. Buikx, et al. 2011. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. USA 108: 14549-14554.
Halfwerk, W., L.J. Holleman, C. Lessells, et al. 2011. Negative impact of traffic noise on avian reproductive success. J. Appl. Ecol. 48: 210-219.
Tüzün, N., L. Op de Beeck & R. Stoks. 2017. Sexual selection reinforces a higher flight endurance in urban damselflies. Evol. Appl. 10: 694-703.
Cheptou, P.-O., O. Carrue, S. Rouifed, et al. 2008. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc. Natl. Acad. Sci. USA 105: 3796-3799.
Deutsch, C.A., J.J. Tewksbury, R.B. Huey, et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105: 6668-6672.
Diamond, S.E., D.M. Sorger, J. Hulcr, et al. 2012. Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Glob. Change Biol. 18: 448-456.
Sinervo, B., F. Méndez-de-la-Cruz, D.B. Miles, et al. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328: 894-899.
Bernhardt, J.R., J.M. Sunday & M.I. O'Connor. 2018. Metabolic theory and the temperature-size rule explain the temperature dependence of population carrying capacity. Am. Nat. 192: 687-697.
Welti, E.A.R., K.A. Roeder, K.M. de Beurs, et al. 2020. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc. Natl. Acad. Sci. USA. 117: 7271-7275.
Huey, R.B. & J.G. Kingsolver. 2019. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194: E140-E150.
De Meester, L., R. Stoks & K.I. Brans. 2018. Genetic adaptation as a biological buffer against climate change: potential and limitations. Integr. Zool. 13: 372-391.
Bell, G. & S. Collins. 2008. Adaptation, extinction and global change. Evol. Appl. 1: 3-16.
Kingsolver, J.G. & L.B. Buckley. 2015. Climate variability slows evolutionary responses of Colias butterflies to recent climate change. Proc. R. Soc. B Biol. Sci. 282: 20142470.
Karell, P., K. Ahola, T. Karstinen, et al. 2011. Climate change drives microevolution in a wild bird. Nat. Commun. 2: 1-7.
Bradshaw, W.E. & C.M. Holzapfel. 2001. Genetic shift in photoperiodic response correlated with global warming. Proc. Natl. Acad. Sci. USA 98: 14509-14511.
van, A.M., L. Salis, L.J.M. Holleman, et al. 2013. Evolutionary response of the egg hatching date of a herbivorous insect under climate change. Nat. Clim. Change 3: 244-248.
Anderson, J.T., D.W. Inouye, A.M. McKinney, et al. 2012. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. Lond. B Biol. Sci. 279: 3843-3852.
Geerts, A.N., J. Vanoverbeke, B. Vanschoenwinkel, et al. 2015. Rapid evolution of thermal tolerance in the water flea Daphnia. Nat. Clim. Change 5: 665-668.
Brans, K.I., M. Jansen, J. Vanoverbeke, et al. 2017. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Change Biol. 23: 5218-5227.
Leal, M., A.R. Gunderson & N.H.E.J. Tewskbury. 2012. Rapid change in the thermal tolerance of a tropical lizard. Am. Nat. 180: 815-822.
Miller, M.P. & E.R. Vincent. 2008. Rapid natural selection for resistance to an introduced parasite of rainbow trout. Evol. Appl. 1: 336-341.
Kitano, J., D.I. Bolnick, D.A. Beauchamp, et al. 2008. Reverse evolution of armor plates in the threespine stickleback. Curr. Biol. 18: 769-774.
Gomulkiewicz, R. & R.D. Holt. 1995. When does evolution by natural selection prevent extinction? Evolution 49: 201-207.
Radchuk, V., T. Reed, C. Teplitsky, et al. 2019. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10: 1-14.
Diamond, S.E. 2017. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change. Ann. N.Y. Acad. Sci. 1389: 5-19.
Kellermann, V., J. Overgaard, A.A. Hoffmann, et al. 2012. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl. Acad. Sci. USA 109: 16228-16233.
Etterson, J.R. & R.G. Shaw. 2001. Constraint to adaptive evolution in response to global warming. Science 294: 151-154.
Kelly, M.W., M.B. DeBiasse, V.A. Villela, et al. 2016. Adaptation to climate change: trade-offs among responses to multiple stressors in an intertidal crustacean. Evol. Appl. 9: 1147-1155.
Pauls, S.U., C. Nowak, M. Bálint, et al. 2013. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22: 925-946.
Hangartner, S. & A.A. Hoffmann. 2016. Evolutionary potential of multiple measures of upper thermal tolerance in Drosophila melanogaster. Funct. Ecol. 30: 442-452.
Yauk, C.L. & J.S. Quinn. 1996. Multilocus DNA fingerprinting reveals high rate of heritable genetic mutation in herring gulls nesting in an industrialized urban site. Proc. Natl. Acad. Sci. USA 93: 12137-12141.
Yauk, C.L., G.A. Fox, B.E. McCarry, et al. 2000. Induced minisatellite germline mutations in herring gulls (Larus argentatus) living near steel mills. Mutat. Res. 452: 211-218.
Somers, C.M., B.E. McCarry, F. Malek, et al. 2004. Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science 304: 1008-1010.
Mousseau, T.A. & A.P. Møller. 2014. Genetic and ecological studies of animals in Chernobyl and Fukushima. J. Hered. 105: 704-709.
Eyre-Walker, A. & P.D. Keightley. 2007. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8: 610-618.
Tseng, M., J.R. Bernhardt & A.E. Chila. 2019. Species interactions mediate thermal evolution. Evol. Appl. 12: 1463-1474.
Merckx, T., C. Souffreau, A. Kaiser, et al. 2018. Body-size shifts in aquatic and terrestrial urban communities. Nature 558: 113.
Sheridan, J.A. & D. Bickford. 2011. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1: 401-406.
Yilmaz, A.R., L.D. Chick, A. Perez, et al. 2019. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands. J. Therm. Biol 85: 102426.
Thomas, C.D. 2000. Dispersal and extinction in fragmented landscapes. Proc. R. Soc. Lond. B Biol. Sci. 267: 139-145.
Rankin, D.J. & A. López-Sepulcre. 2005. Can adaptation lead to extinction? Oikos 111: 616-619.
Ferriere, R. & S. Legendre. 2013. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Philos. Trans. R. Soc. B Biol. Sci. 368: 20120081.
Webb, C. 2003. A complete classification of Darwinian extinction in ecological interactions. Am. Nat. 161: 181-205.
Singer, M.C. & C. Parmesan. 2018. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557: 238-241.
Singer, M.C. & C. Parmesan. 2019. Butterflies embrace maladaptation and raise fitness in colonizing novel host. Evol. Appl. 12: 1417-1433.
Van Dyck, H., D. Bonte, R. Puls, et al. 2015. The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos 124: 54-61.
Diamond, S.E., L.D. Chick, A. Perez, et al. 2018. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. Biol. Sci. 285: 20180036.
Kodra, E., K. Steinhaeuser & A.R. Ganguly. 2011. Persisting cold extremes under 21st-century warming scenarios. Geophys. Res. Lett. 38: L08705.
Williams, C., H.A.L. Henry & B.J. Sinclair. 2015. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90: 214-235.
Diamond, S.E. & R.A. Martin. 2016. The interplay between plasticity and evolution in response to human-induced environmental change. F1000Res. 5: 2835.
Chevin, L.-M., R. Lande & G.M. Mace. 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8: e1000357.
Donelson, J.M., P.L. Munday, M.I. McCormick, et al. 2012. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2: 30-32.
Bonamour, S., L.-M. Chevin, A. Charmantier, et al. 2019. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. B Biol. Sci. 374: 20180178.
Hale, R., J.R. Morrongiello & S.E. Swearer. 2016. Evolutionary traps and range shifts in a rapidly changing world. Biol. Lett. 12: 20160003.
Janzen, F.J. 1994. Climate change and temperature-dependent sex determination in reptiles. Proc. Natl. Acad. Sci. USA 91: 7487-7490.
Kriska, G., Z. Csabai, P. Boda, et al. 2006. Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals. Proc. Biol. Sci. 273: 1667-1671.
Cusa, M., D.A. Jackson & M. Mesure. 2015. Window collisions by migratory bird species: urban geographical patterns and habitat associations. Urban Ecosyst. 18: 1427-1446.
Gaston, K.J., T.W. Davies, S.L. Nedelec, et al. 2017. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48: 49-68.
Griffin, P.C. & L. Scott Mills. 2009. Sinks without borders: snowshoe hare dynamics in a complex landscape. Oikos 118: 1487-1498.
Mccardle, L.D. & C.L. Fontenot. 2016. The influence of thermal biology on road mortality risk in snakes. J. Therm. Biol. 56: 39-49.
Angilletta, M.J., E. Ashley Steel, K.K. Bartz, et al. 2008. Big dams and salmon evolution: changes in thermal regimes and their potential evolutionary consequences. Evol. Appl. 1: 286-299.
Hawlena, D., D. Saltz, Z. Abramsky, et al. 2010. Ecological trap for desert lizards caused by anthropogenic changes in habitat structure that favor predator activity. Conserv. Biol. 24: 803-809.
Schlaepfer, M.A., M.C. Runge & P.W. Sherman. 2002. Ecological and evolutionary traps. Trends Ecol. Evol. 17: 474-480.
Marshall, D.J. & T. Uller. 2007. When is a maternal effect adaptive? Oikos 16: 1957-1963.
Burgess, S. & D.J. Marshall. 2014. Adaptive parental effects: the importance of estimating environmental predictability and offspring fitness appropriately. Oikos 123: 769-776.
Bell, A.M. & J. Hellmann. 2019. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. Syst. 50: 97-118.
Telemeco, R.S., B. Fletcher, O. Levy, et al. 2017. Lizards fail to plastically adjust nesting behavior or thermal tolerance as needed to buffer populations from climate warming. Glob. Change Biol. 23: 1075-1084.
Kirkpatrick, M. & R. Lande. 1989. The evolution of maternal characters. Evolution 43: 485-503.
Walters, R.J., W.U. Blanckenhorn & D. Berger. 2012. Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Funct. Ecol. 26: 1324-1338.
Urban, M.C., G. Bocedi, A.P. Hendry, et al. 2016. Improving the forecast for biodiversity under climate change. Science 353: aad8466.
Bush, A., K. Mokany, R. Catullo, et al. 2016. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19: 1468-1478.
Razgour, O., B. Forester, J.B. Taggart, et al. 2019. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl. Acad. Sci. USA 116: 10418-10423.
Kinzner, M.-C., A. Gamisch, A.A. Hoffmann, et al. 2019. Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. Sci. Total Environ. 695: 133753.
Aitken, S.N. & M.C. Whitlock. 2013. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44: 367-388.
van, O.M.J.H., J.K. Oliver, H.M. Putnam, et al. 2015. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. USA 112: 2307-2313.

Auteurs

Sarah E Diamond (SE)

Department of Biology, Case Western Reserve University, Cleveland, Ohio.

Ryan A Martin (RA)

Department of Biology, Case Western Reserve University, Cleveland, Ohio.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH