Trait-based signatures of cloud base height in a tropical cloud forest.

Costa Rica climate edaphic elevation functional herbaceous montane mountain serpentine soil enzyme ultramafic

Journal

American journal of botany
ISSN: 1537-2197
Titre abrégé: Am J Bot
Pays: United States
ID NLM: 0370467

Informations de publication

Date de publication:
06 2020
Historique:
received: 29 11 2019
accepted: 16 03 2020
pubmed: 6 6 2020
medline: 14 7 2020
entrez: 6 6 2020
Statut: ppublish

Résumé

Clouds have profound consequences for ecosystem structure and function. Yet, the direct monitoring of clouds and their effects on biota is challenging especially in remote and topographically complex tropical cloud forests. We argue that known relationships between climate and the taxonomic and functional composition of plant communities may provide a fingerprint of cloud base height, thus providing a rapid and cost-effective assessment in remote tropical cloud forests. To detect cloud base height, we compared species turnover and functional trait values among herbaceous and woody plant communities in an ecosystem dominated by cloud formation. We measured soil and air temperature, soil nutrient concentrations, and extracellular enzyme activity. We hypothesized that woody and herbaceous plants would provide signatures of cloud base height, as evidenced by abrupt shifts in both taxonomic composition and plant function. We demonstrated abrupt changes in taxonomic composition and the community- weighted mean of a key functional trait, specific leaf area, across elevation for both woody and herbaceous species, consistent with our predictions. However, abrupt taxonomic and functional changes occurred 100 m higher in elevation for herbaceous plants compared to woody ones. Soil temperature abruptly decreased where herbaceous taxonomic and functional turnover was high. Other environmental variables including soil biogeochemistry did not explain the abrupt change observed for woody plant communities. We provide evidence that a trait-based approach can be used to estimate cloud base height. We outline how rises in cloud base height and differential environmental requirements between growth forms can be distinguished using this approach.

Identifiants

pubmed: 32500611
doi: 10.1002/ajb2.1483
doi:

Substances chimiques

Soil 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

886-894

Informations de copyright

© 2020 Botanical Society of America.

Références

Abràmoff, M. D., P. J. Magalhães, and S. J. Ram. 2004. Image processing with ImageJ. Biophotonics International 11: 36-42.
Anchukaitis, K. J., M. N. Evans, N. T. Wheelwright, and D. P. Schrag. 2008. Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. Journal of Geophysical Research: Biogeosciences 113: G03030.
Benzing, D. H. 1998. Vulnerabilities of tropical forests to climate change: The significance of resident epiphytes. InA. Markham [ed.], Potential impacts of climate change on tropical forest ecosystems, 379-400. Springer, Dordrecht, Netherlands.
Bertrand, R., J. Lenoir, C. Piedallu, G. Riofrío-Dillon, P. de Ruffray, C. Vidal, and J.-C. Gégout. 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479: 517-520.
Bony, S., B. Stevens, D. M. W. Frierson, C. Jakob, M. Kageyama, R. Pincus, T. G. Shepherd, et al. 2015. Clouds, circulation and climate sensitivity. Nature Geoscience 8: 261-268.
Brady, K. U., A. R. Kruckeberg, and H. D. Bradshaw Jr. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics 36: 243-266.
Bray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325-349.
Brienen, R. J. W., E. Lebrija-Trejos, P. A. Zuidema, and M. Martínez-Ramos. 2010. Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Global Change Biology 16: 2001-2012.
Brooks, R. R. 1987. Serpentine and its vegetation: A multidisciplinary approach. Croom Helm, Beckenham, UK.
Bruijnzeel, L. A., M. Mulligan, and F. N. Scatena. 2011. Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrological Processes 25: 465-498.
Bruijnzeel, L. A., and J. Proctor. 1995. Hydrology and biogeochemistry of tropical montane cloud forests: What do we really know? In L. S. Hamilton, J. O. Juvik, and F. N. Scatena [eds.], Tropical montane cloud forests, 38-78. Springer, New York, NY, USA.
Caldwell, B. A. 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 49: 637-644.
Clarke, K. R., and R. M. Warwick. 2001. Changes in marine communities: An approach to statistical analysis and interpretation (PRIMER-E). Plymouth Marine Laboratory, Plymouth, UK.
Dauphin, G., and M. Grayum. 2015. Bryophytes of the Santa Elena Peninsula and Islas Murciélago, Guanacaste, Costa Rica, with special attention to neotropical dry forest habitats. Lankesteriana 5: 53-61.
Dawes, M. A., P. Schleppi, S. Hättenschwiler, C. Rixen, and F. Hagedorn. 2017. Soil warming opens the nitrogen cycle at the alpine treeline. Global Change Biology 23: 421-434.
de Boer, W., G. A. Kowalchuk, and J. A. van Veen. 2006. “Root-food” and the rhizosphere microbial community composition. New Phytologist 170: 3-6.
Diaz, H. F., T. W. Giambelluca, and J. K. Eischeid. 2011. Changes in the vertical profiles of mean temperature and humidity in the Hawaiian Islands. Global and Planetary Change 77: 21-25.
Diaz, H. F., and N. E. Graham. 1996. Recent changes in tropical freezing heights and the role of sea surface temperature. Nature 383: 152-155.
Dullinger, S., T. Dirnböck, and G. Grabherr. 2004. Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. Journal of Ecology 92: 241-252.
Enquist, B. J., and C. A. F. Enquist. 2011. Long-term change within a neotropical forest: Assessing differential functional and floristic responses to disturbance and drought. Global Change Biology 17: 1408-1424.
Feeley, K. J., M. R. Silman, M. B. Bush, W. Farfan, K. Garcia Cabrera, Y. Malhi, P. Meir, et al. 2011. Upslope migration of Andean trees. Journal of Biogeography 38: 783-791.
Fisher, J. B., Y. Malhi, I. C. Torres, D. B. Metcalfe, M. J. van de Weg, P. Meir, J. E. Silva-Espejo, et al. 2013. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172: 889-902.
Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 1-34.
Giorgi, F. 2006. Climate change hot spots. Geophysical Research Letters 33: 1-4.
Grabherr, G. 1994. Climate effects on mountain plants. Nature 369: 448.
Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111: 1169-1194.
Grime, J. P., J. G. Hodgson, and R. Hunt. 1988. Comparative plant ecology: A functional approach to common British species. Unwin Hyman, London, UK.
Grubb, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: With special reference to mineral nutrition. Annual Review of Ecology and Systematics 8: 83-107.
Houlton, B. Z., D. M. Sigman, E. A. Schuur, and L. O. Hedin. 2007. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proceedings of the National Academy of Sciences, USA 104: 8902-8906.
Hulshof, C. M., C. Violle, M. J. Spasojevic, B. McGill, E. Damschen, S. Harrison, and B. J. Enquist. 2013. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. Journal of Vegetation Science 24: 921-931.
Janzen, D. H.1998. Conservation analysis of the Santa Elena property, Peninsula Santa Elena, northwestern Costa Rica. Report to the Government of Costa Rica, 129 pp. Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Karmalkar, A. V., R. S. Bradley, and H. F. Diaz. 2008. Climate change scenario for Costa Rican montane forests. Geophysical Research Letters 35: 1-5.
Karpa, D. M., and P. M. Vitousek. 1994. Successional development of a Hawaiian montane grassland. Biotropica 25: 2-11.
Kaspar, T. C., and W. L. Bland. 1992. Soil temperature and root growth. Soil Science 154: 290-299.
Kattge, J., S. Diaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bönisch, E. Garnier, et al. 2011. TRY-a global database of plant traits. Global Change Biology 17: 2905-2935.
Körner, C. 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115: 445-459.
Laliberté, E., P. Legendre, and B. Shipley. 2014. FD: Mmeasuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. https://cran.r-project.org/web/packages/FD/index.html.
Lawrimore, J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, S. Vose, and J. Rennie. 2011. An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. Journal of Geophysical Research: Atmospheres 116: D19121.
Lawton, R. O., U. S. Nair, R. A. Pielke Sr, and R. M. Welch. 2001. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294: 584-587.
Leigh, E. G., P. Davidar, C. W. Dick, J. Terborgh, J.-P. Puyravaud, H. ter Steege, and S. J. Wright. 2004. Why do some tropical forests have so many species of trees? Biotropica 36: 447-473.
Leishman, M. R., I. J. Wright, A. T. Moles, and M. Westoby. 2000. The evolutionary ecology of seed size. In M. Fenner [ed.] Seeds: The ecology of regeneration in plant communities, 31-57. CAB International, Wallingford, UK.
Lenoir, J., J. C. Gégout, P. A. Marquet, P. de Ruffray, and H. Brisse. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 1768-1771.
Lohse, K. A., D. Nullet, and P. M. Vitousek. 1995. The effects of an extreme drought on the vegetation of a single lava flow on Mauna Loa, Hawaii. Pacific Science 49: 212-220.
Looby, C. I., and K. K. Treseder. 2018. Shifts in soil fungi and extracellular enzyme activity with simulated climate change in a tropical montane cloud forest. Soil Biology and Biochemistry 117: 87-96.
Marrs, R. H., J. Proctor, A. Heaney, and M. D. Mountford. 1988. Changes in soil nitrogen mineralization and nitrification along an altitudinal transect in tropical rainforest in Costa Rica. Journal of Ecology 76: 466-482.
McCain, C. M., and R. K. Colwell. 2011. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecology Letters 14: 1236-1245.
Mehlich, A. 1984. Mehlich 3 soil test extractant: a modification of the Melich 2 extractant. Conmmunications in Soil and Plant Analysis 15: 1409-1416.
Miller, P. W., T. L. Mote, C. A. Ramseyer, A. E. Van Beusekom, M. Scholl, and G. González. 2018. A 42-year inference of cloud base height trends in the Luquillo Mountains of northeastern Puerto Rico. Climate Research 76: 87-94.
Möhl, P., M. A. Mörsdorf, M. A. Dawes, F. Hagedorn, P. Bebi, D. Viglietti, M. Freppaz, et al. 2019. Twelve years of low nutrient input stimulates growth of trees and dwarf shrubs in the treeline ecotone. Journal of Ecology 107: 768-780.
Mooney, H. A., E. L. Dunn, F. Shropshire, and L. Song. 1970. Vegetation comparisons between the mediterranean climatic areas of California and Chile. Flora 159: 480-496.
Murphy, S. J., K. Salpeter, and L. S. Comita. 2016. Higher β-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology 97: 2074-2084.
Nathan, R., N. Horvitz, Y. He, and A. Kuparinen. 2011. Spread of North American wind-dispersed trees in future environments. Ecology 14: 211-219.
Niinemets, Ü. 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82: 453-469.
Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, et al. 2019. Package ‘vegan’. Community ecology package, version 2: 1-295. Website https://CRAN.R-project.org/package=vegan
Ordoñez, J. C., P. M. Van Bodegom, J. P. M. Witte, I. J. Wright, P. B. Reich, and R. Aerts. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography 18: 137-149.
Phillips, B. L., G. P. Brown, and R. Shine. 2010. Life-history evolution in range-shifting populations. Ecology 91: 1617-1627.
Pierce, S., G. Brusa, I. Vagge, and B. E. Cerabolini. 2013. Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology 27: 1002-1010.
Poorter, H., Ü. Niinemets, L. Poorter, I. J. Wright, and R. Villar. 2009. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist 182: 565-588.
Pounds, J., M. Fogden, and J. Campbell. 1999. Biological response to climate change on a tropical mountain. Nature 398: 611-615.
Qin, J., K. Yang, S. Liang, and X. Guo. 2009. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change 97: 321-327.
Reeves, R. D., A. J. M. Baker, and R. Romero. 2007. The ultramafic flora of the Santa Elena peninsula, Costa Rica: A biogeochemical reconnaissance. Journal of Geochemical Exploration 93: 153-159.
Reich, P. B., D. S. Ellsworth, M. B. Walters, J. M. Vose, C. Gresham, J. C. Volin, and W. D. Bowman. 1999. Generality of leaf trait relationships: A test across six biomes. Ecology 80: 1955-1969.
Richardson, A. D., E. G. Denny, and T. G. Siccama. 2003. Evidence for a rising cloud ceiling in eastern North America. Journal of Climate 16: 2093-2098.
Roberts, B. A., and J. Proctor. 1992. The ecology of areas with serpentinized rocks: A world view. Springer, New York, New York, USA.
Scatena, F. N. 1998. An assessment of climatic change in the Luquillo Mountains of Puerto Rico. InR. I. Segarra-García [ed.], Proceeding tropical hydrology and Caribbean water resources, Third international symposium on tropical hydrology and Fifth Caribbean Islands water resources congress, San Juan, Puerto Rico, 193-198. American Water Resources Association, Herndon, Virginia, USA.
Schenk, H. J., and R. B. Jackson. 2002. Rooting depths, lateral root spreads, and belowground/aboveground allometries of plants in water-limited ecosystems. Journal of Ecology 72: 311-328.
Sherwood, S. C., S. Bony, and J.-L. Dufresne. 2014. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505: 37-42.
Smith, S. A., and J. M. Beaulieu. 2009. Life history influences rates of climatic niche evolution in flowering plants. Proceedings of the Royal Society of London, B, Biological Sciences 276: 4345-4352.
Sperling, F. N., R. Washington, and R. J. Whittaker. 2004. Future climate change of the subtropical North Atlantic: Implications for the cloud forests of Tenerife. Climatic Change 65: 103-123.
Still, C. J., P. N. Foster, and S. H. Schneider. 1999. Simulating the effects of climate change on tropical montane cloud forests. Nature 398: 608-610.
Tanner, E. V. J., P. M. Vitousek, and E. Cuevas. 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79: 10-22.
Thomson, F. J., A. T. Moles, T. D. Auld, and R. T. Kingsford. 2011. Seed dispersal distance is more strongly correlated with plant height than with seed mass. Journal of Ecology 99: 1299-1307.
Van Steenis, C. G. G. J. 1972. The mountain flora of Java. E. J. Brill, Leiden, Netherlands.
Vitousek, P. M., and P. A. Matson. 1988. Nitrogen transformations in a range of tropical forest soils. Soil Biology and Biochemistry 20: 361-367.
Waring, B. G. 2013. Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology and Biochemistry 64: 89-95.
Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. smatr 3 - an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution 3: 257-259.
Williams, J. W., S. T. Jackson, and J. E. Kutzbach. 2007. Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences, USA 104: 5738-5742.
Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
Wright, I. J., M. Westoby, and P. B. Reich. 2002. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology 90: 534-543.
Zhang, C., Y. Wang, A. Lauer, K. Hamilton, and F. Xie. 2012. Cloud base and top heights in the Hawaiian region determined with satellite and ground-based measurements. Geophysical Research Letters 39: L15706.

Auteurs

Catherine M Hulshof (CM)

Department of Biology, Virginia Commonwealth University, Richmond, Virginia, 23284, USA.

Bonnie G Waring (BG)

Department of Biology and Ecology Center, Utah State University, Logan, Utah, 84322, USA.

Jennifer S Powers (JS)

Departments of Ecology, Evolution, & Behavior and Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, 55108, USA.

Susan P Harrison (SP)

Department of Environmental Science and Policy, University of California Davis, Davis, California, 95616, USA.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH