Symbiont Digestive Range Reflects Host Plant Breadth in Herbivorous Beetles.
adaptation
beetles
co-evolution
herbivore-microbe interactions
herbivory
symbiosis
Journal
Current biology : CB
ISSN: 1879-0445
Titre abrégé: Curr Biol
Pays: England
ID NLM: 9107782
Informations de publication
Date de publication:
03 08 2020
03 08 2020
Historique:
received:
19
01
2020
revised:
05
04
2020
accepted:
12
05
2020
pubmed:
6
6
2020
medline:
19
8
2021
entrez:
6
6
2020
Statut:
ppublish
Résumé
Numerous adaptations are gained in light of a symbiotic lifestyle. Here, we investigated the obligate partnership between tortoise leaf beetles (Chrysomelidae: Cassidinae) and their pectinolytic Stammera symbionts to detail how changes to the bacterium's streamlined metabolic range can shape the digestive physiology and ecological opportunity of its herbivorous host. Comparative genomics of 13 Stammera strains revealed high functional conservation, highlighted by the universal presence of polygalacturonase, a primary pectinase targeting nature's most abundant pectic class, homogalacturonan (HG). Despite this conservation, we unexpectedly discovered a disparate distribution for rhamnogalacturonan lyase, a secondary pectinase hydrolyzing the pectic heteropolymer, rhamnogalacturonan I (RG-I). Consistent with the annotation of rhamnogalacturonan lyase in Stammera, cassidines are able to depolymerize RG-I relative to beetles whose symbionts lack the gene. Given the omnipresence of HG and RG-I in foliage, Stammera that encode pectinases targeting both substrates allow their hosts to overcome a greater diversity of plant cell wall polysaccharides and maximize access to the nutritionally rich cytosol. Possibly facilitated by their symbionts' expanded digestive range, cassidines additionally endowed with rhamnogalacturonan lyase appear to utilize a broader diversity of angiosperms than those beetles whose symbionts solely supplement polygalacturonase. Our findings highlight how symbiont metabolic diversity, in concert with host adaptations, may serve as a potential source of evolutionary innovations for herbivorous lineages.
Identifiants
pubmed: 32502409
pii: S0960-9822(20)30730-2
doi: 10.1016/j.cub.2020.05.043
pii:
doi:
Substances chimiques
Polygalacturonase
EC 3.2.1.15
Polysaccharide-Lyases
EC 4.2.2.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2875-2886.e4Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2020 Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Interests The authors declare no competing interests.