The medial ligaments and the ACL restrain anteromedial laxity of the knee.
Adult
Anterior Cruciate Ligament Injuries
/ physiopathology
Biomechanical Phenomena
Cadaver
Female
Humans
Joint Instability
/ physiopathology
Knee Joint
/ physiopathology
Ligaments, Articular
/ injuries
Male
Medial Collateral Ligament, Knee
/ injuries
Middle Aged
Range of Motion, Articular
Rotation
Tibia
/ physiopathology
Torque
Wound Healing
Young Adult
Anterior cruciate ligament
Anteromedial rotatory instability
Biomechanics
Medial collateral ligament
Posterior oblique ligament
Restraint of tibiofemoral joint laxity
Journal
Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
ISSN: 1433-7347
Titre abrégé: Knee Surg Sports Traumatol Arthrosc
Pays: Germany
ID NLM: 9314730
Informations de publication
Date de publication:
Dec 2020
Dec 2020
Historique:
received:
22
04
2020
accepted:
28
05
2020
pubmed:
7
6
2020
medline:
13
3
2021
entrez:
7
6
2020
Statut:
ppublish
Résumé
The purpose of this study was to determine the contribution of each of the ACL and medial ligament structures in resisting anteromedial rotatory instability (AMRI) loads applied in vitro. Twelve knees were tested using a robotic system. It imposed loads simulating clinical laxity tests at 0° to 90° flexion: ±90 N anterior-posterior force, ±8 Nm varus-valgus moment, and ±5 Nm internal-external rotation, and the tibial displacements were measured in the intact knee. The ACL and individual medial structures-retinaculum, superficial and deep medial collateral ligament (sMCL and dMCL), and posteromedial capsule with oblique ligament (POL + PMC)-were sectioned sequentially. The tibial displacements were reapplied after each cut and the reduced loads required allowed the contribution of each structure to be calculated. For anterior translation, the ACL was the primary restraint, resisting 63-77% of the drawer force across 0° to 90°, the sMCL contributing 4-7%. For posterior translation, the POL + PMC contributed 10% of the restraint in extension; other structures were not significant. For valgus load, the sMCL was the primary restraint (40-54%) across 0° to 90°, the dMCL 12%, and POL + PMC 16% in extension. For external rotation, the dMCL resisted 23-13% across 0° to 90°, the sMCL 13-22%, and the ACL 6-9%. The dMCL is the largest medial restraint to tibial external rotation in extension. Therefore, following a combined ACL + MCL injury, AMRI may persist if there is inadequate healing of both the sMCL and dMCL, and MCL deficiency increases the risk of ACL graft failure.
Identifiants
pubmed: 32504158
doi: 10.1007/s00167-020-06084-4
pii: 10.1007/s00167-020-06084-4
pmc: PMC7669770
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3700-3708Références
Am J Sports Med. 2018 Jun;46(7):1559-1565
pubmed: 29667852
Am J Sports Med. 2017 Feb;45(2):347-354
pubmed: 28027653
J Bone Joint Surg Am. 1991 Feb;73(2):248-56
pubmed: 1993720
Am J Sports Med. 2018 Mar;46(4):862-868
pubmed: 29466019
Am J Sports Med. 2016 Feb;44(2):345-54
pubmed: 26657572
Arthroscopy. 2019 Feb;35(2):670-681
pubmed: 30612770
Bone Joint J. 2014 Mar;96-B(3):325-31
pubmed: 24589786
J Biomech. 2005 May;38(5):1067-74
pubmed: 15797588
Clin Orthop Relat Res. 1978 May;(132):206-18
pubmed: 679543
J Bone Joint Surg Am. 1981 Oct;63(8):1257-69
pubmed: 7287796
Knee Surg Sports Traumatol Arthrosc. 2019 Jan;27(1):166-176
pubmed: 30046994
Knee Surg Sports Traumatol Arthrosc. 2019 Aug;27(8):2450-2459
pubmed: 30374568
Med Eng Phys. 2017 Sep;47:210-213
pubmed: 28651855
Am J Sports Med. 1994 May-Jun;22(3):402-9
pubmed: 8037282
J Bone Joint Surg Am. 1973 Jul;55(5):923-40
pubmed: 4760100
Knee Surg Sports Traumatol Arthrosc. 2020 Dec;28(12):3720-3732
pubmed: 32483671
J Bone Joint Surg Am. 1983 Mar;65(3):323-9
pubmed: 6826594
J Bone Joint Surg Br. 2004 Jul;86(5):674-81
pubmed: 15274262
Am J Sports Med. 2005 Sep;33(9):1380-5
pubmed: 16002491
J Bone Joint Surg Am. 1985 Jun;67(5):720-6
pubmed: 3997924
J Anat. 2013 Oct;223(4):321-8
pubmed: 23906341
Am J Sports Med. 2017 Jun;45(7):1547-1557
pubmed: 28151693
Br J Sports Med. 2015 Nov;49(22):1452-60
pubmed: 25907183
Am J Sports Med. 2014 Jul;42(7):1675-81
pubmed: 24769410
J Bone Joint Surg Am. 1979 Jan;61(1):56-62
pubmed: 759437
J Bone Joint Surg Am. 1980 Mar;62(2):259-70
pubmed: 7358757
Knee Surg Sports Traumatol Arthrosc. 2018 Feb;26(2):550-557
pubmed: 28540619
Am J Sports Med. 2006 Nov;34(11):1815-23
pubmed: 16816148
J Biomech. 1996 Oct;29(10):1357-60
pubmed: 8884481
J Bone Joint Surg Am. 1971 Oct;53(7):1257-70
pubmed: 5170981
Am J Sports Med. 2020 Feb;48(2):285-297
pubmed: 31940222
Knee Surg Sports Traumatol Arthrosc. 2020 Apr 10;:
pubmed: 32277264
Am J Sports Med. 2016 May;44(5):1203-8
pubmed: 26811305
J Bone Joint Surg Br. 2010 Jul;92(7):949-53
pubmed: 20595112
J Bone Joint Surg Am. 1968 Mar;50(2):211-25
pubmed: 5642814
Am J Sports Med. 2009 Sep;37(9):1762-70
pubmed: 19609008