Hippo signaling, actin polymerization, and follicle activation in fragmented human ovarian cortex.
Hippo pathway
actin
female infertility
follicle activation
ovarian cortex
Journal
Molecular reproduction and development
ISSN: 1098-2795
Titre abrégé: Mol Reprod Dev
Pays: United States
ID NLM: 8903333
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
02
12
2019
accepted:
18
04
2020
pubmed:
9
6
2020
medline:
23
7
2021
entrez:
8
6
2020
Statut:
ppublish
Résumé
The Hippo pathway has been associated with regulation of early follicle growth. Studies of murine ovaries suggest that changes in the actin cytoskeleton, caused by fragmentation, result in inhibition of the Hippo pathway, and in turn, may activate follicle growth. In humans, the connections between fragmentation, the actin cytoskeleton, and follicle activation are yet to be confirmed. In this study, we investigated the impact in vitro fragmentation of a human ovarian cortex on (a) actin polymerization, (b) components of the Hippo pathway, and (c) follicle growth in vivo. The results showed that the ratio between globular and filamentous actin remained unchanged at all timepoints (0, 10, 30, 60, 120, and 240 min) following tissue fragmentation. Neither was the Hippo pathway effector protein YES-associated protein upregulated nor was gene expression of the downstream growth factors CCN2, CCN3, or CCN5 increased at any timepoint in the fragmented cortex. Furthermore, the number of growing follicles was similar in fragmented and intact cortex pieces after 6 weeks' xenotransplantation. However, the total number of surviving follicles was considerably lower in the fragmented cortex compared with intact tissue, suggesting detrimental effects of fragmentation on tissue grafting. These results indicate that fragmentation is likely to be ineffective to activate follicle growth in the human ovarian cortex.
Substances chimiques
Actins
0
Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
711-719Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Cheng, Y., Feng, Y., Jansson, L., Sato, Y., Deguchi, M., Kawamura, K., & Hsueh, A. J. (2015). Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB Journal, 29(6), 2423-2430. https://doi.org/10.1096/fj.14-267856
Dolmans, M.-M., Cordier, F., Amorim, C. A., Donnez, J., & Vander Linden, C. (2019). In vitro activation prior to transplantation of human ovarian tissue: Is it truly effective? Frontiers in Endocrinology, 10, 520. https://doi.org/10.3389/fendo.2019.00520
Dolmans, M.-M., Martinez-Madrid, B., Gadisseux, E., Guiot, Y., Yuan, W. Y., Torre, A., … Donnez, J. (2007). Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction, 134(2), 253-262. https://doi.org/10.1530/REP-07-0131
Fabregues, F., Ferreri, J., Calafell, J. M., Moreno, V., Borrás, A., Manau, D., & Carmona, F. (2018). Pregnancy after drug-free in vitro activation of follicles and fresh tissue autotransplantation in primary ovarian insufficiency patient: A case report and literature review. Journal of Ovarian Research, 11(1), 76. https://doi.org/10.1186/s13048-018-0447-3
Fernández, B. G., Gaspar, P., Brás-Pereira, C., Jezowska, B., Rebelo, S. R., & Janody, F. (2011). Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development, 138(11), 2337-2346. https://doi.org/10.1242/dev.063545
Gavish, Z., Spector, I., Peer, G., Schlatt, S., Wistuba, J., Roness, H., & Meirow, D. (2018). Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation. Journal of Assisted Reproduction And Genetics, 35(1), 61-69. https://doi.org/10.1007/s10815-017-1079-z
Gaytan, F., Morales, C., Leon, S., Garcia-Galiano, D., Roa, J., & Tena-Sempere, M. (2015). Crowding and follicular fate: Spatial determinants of follicular reserve and activation of follicular growth in the mammalian ovary. PLOS One, 10(12):e0144099. https://doi.org/10.1371/journal.pone.0144099
Grijalva, J. L., Huizenga, M., Mueller, K., Rodriguez, S., Brazzo, J., Camargo, F., … Vakili, K. (2014). Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration. American Journal of Physiology Gastrointestinal and Liver Physiology, 307(2), G196-G204. https://doi.org/10.1152/ajpgi.00077.2014
Grosbois, J., & Demeestere, I. (2018). Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Human Reproduction, 33(9), 1705-1714. https://doi.org/10.1093/humrep/dey250
Heallen, T., Morikawa, Y., Leach, J., Tao, G., Willerson, J. T., Johnson, R. L., & Martin, J. F. (2013). Hippo signaling impedes adult heart regeneration. Development, 140(23), 4683-4690. https://doi.org/10.1242/dev.102798
Hsueh, A. J. W., Kawamura, K., Cheng, Y., & Fauser, B. C. J. M. (2015). Intraovarian control of early folliculogenesis. Endocrine Reviews, 36(1), 1-24. https://doi.org/10.1210/er.2014-1020
Kawamura, K., Cheng, Y., Suzuki, N., Deguchi, M., Sato, Y., Takae, S., … Hsueh, A. J. (2013). Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proceedings of the National Academy of Sciences of the United States of America, 110(43), 17474-17479. https://doi.org/10.1073/pnas.1312830110
Lee, H. N., & Chang, E. M. (2019). Primordial follicle activation as new treatment for primary ovarian insufficiency. Clinical and Experimental Reproductive Medicine, 46(2), 43-49. https://doi.org/10.5653/cerm.2019.46.2.43
Lunding, S. A., Pors, S. E., Kristensen, S. G., Landersoe, S. K., Jeppesen, J. V., Flachs, E. M., … Andersen, A. N. (2019). Biopsying, fragmentation and autotransplantation of fresh ovarian cortical tissue in infertile women with diminished ovarian reserve. Human Reproduction, 34(10), 1924-1936. https://doi.org/10.1093/humrep/dez152
Masciangelo, R., Hossay, C., Donnez, J., & Dolmans, M.-M. (2019). Does the Akt pathway play a role in follicle activation after grafting of human ovarian tissue? Reproductive BioMedicine Online, 00(0), 1-3. https://doi.org/10.1016/j.rbmo.2019.04.007
Meirow, D., Levron, J., Eldar-Geva, T., Hardan, I., Fridman, E., Zalel, Y., … Dor, J. (2005). Pregnancy after transplantation of cryopreserved ovarian. New England Journal of Medicine, 353(3), 318-321. http://www.nejm.org.ep.fjernadgang.kb.dk/doi/full/10.1056/NEJMc055237
Moya, I. M., & Halder, G. (2019). Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nature Reviews Molecular Cell Biology, 20(4), 211-226. https://doi.org/10.1038/s41580-018-0086-y
Reddy, P., Deguchi, M., Cheng, Y., & Hsueh, A. J. W. (2013). Actin cytoskeleton regulates Hippo signaling. PLOS One, 8(9):e73763. https://doi.org/10.1371/journal.pone.0073763
Roness, H., Gavish, Z., Cohen, Y., & Meirow, D. (2013). Ovarian follicle burnout: A universal phenomenon? Cell Cycle (Georgetown, Tex.), 12(20), 3245-3246. https://doi.org/10.4161/cc.26358
Rosendahl, M., Schmidt, K. T., Ernst, E., Rasmussen, P. E., Loft, A., Byskov, A. G., … Andersen, C. Y. (2011). Cryopreservation of ovarian tissue for a decade in Denmark: A view of the technique. Reproductive BioMedicine Online, 22(2), 162-171. https://doi.org/10.1016/j.rbmo.2010.10.015
Sansores-Garcia, L., Bossuyt, W., Wada, K.-I., Yonemura, S., Tao, C., Sasaki, H., & Halder, G. (2011). Modulating F-actin organization induces organ growth by affecting the Hippo pathway. The EMBO Journal, 30(12), 2325-2335. https://doi.org/10.1038/emboj.2011.157
Schmidt, K. L. T., Byskov, A. G., Nyboe Andersen, A., Müller, J., & Yding Andersen, C. (2003). Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Human Reproduction, 18(6), 1158-1164. https://doi.org/10.1093/humrep/deg246
Schmidt, K. T., Rosendahl, M., Ernst, E., Loft, A., Andersen, A. N., Dueholm, M., … Andersen, C. Y. (2011). Autotransplantation of cryopreserved ovarian tissue in 12 women with chemotherapy-induced premature ovarian failure: The Danish experience. Fertility and Sterility, 95(2), 695-701. https://doi.org/10.1016/j.fertnstert.2010.07.1080
Shah, J. S., Sabouni, R., Cayton Vaught, K. C., Owen, C. M., Albertini, D. F., & Segars, J. H. (2018). Biomechanics and mechanical signaling in the ovary: A systematic review. Journal Of Assisted Reproduction And Genetics, 35(7), 1135-1148. https://doi.org/10.1007/s10815-018-1180-y
Silber, S. (2016). How ovarian transplantation works and how resting follicle recruitment occurs: A review of results reported from one center. Women's Health, 12(2), 217-227. https://doi.org/10.2217/whe.15.108
Suzuki, N., Yoshioka, N., Takae, S., Sugishita, Y., Tamura, M., Hashimoto, S., … Kawamura, K. (2015). Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Human Reproduction, 30(3), 608-615. https://doi.org/10.1093/humrep/deu353
Xiang, C., Li, J., Hu, L., Huang, J., Luo, T., Zhong, Z., … Zheng, L. (2015). Hippo signaling pathway reveals a spatio-temporal correlation with the size of primordial follicle pool in mice. Cellular Physiology and Biochemistry, 35(3), 957-968. https://doi.org/10.1159/000369752
Yin, O., Cayton, K., & Segars, J. H. (2016). In vitro activation: A dip into the primordial follicle pool? The Journal of Clinical Endocrinology and Metabolism, 101(10), 3568-3570. https://doi.org/10.1210/jc.2016-2837
Zhai, J., Yao, G., Dong, F., Bu, Z., Cheng, Y., Sato, Y., … Sun, Y. (2016). In vitro activation of follicles and fresh tissue auto-transplantation in primary ovarian insufficiency patients. The Journal of Clinical Endocrinology and Metabolism, 101(11), 4405-4412. https://doi.org/10.1210/jc.2016-1589
Zhang, X., Han, T., Yan, L., Jiao, X., Qin, Y., & Chen, Z.-J. (2019). Resumption of ovarian function after ovarian biopsy/scratch in patients with premature ovarian insufficiency. Reproductive Sciences, 26(2), 207-213. https://doi.org/10.1177/1933719118818906