Tetraspanins in the regulation of mast cell function.


Journal

Medical microbiology and immunology
ISSN: 1432-1831
Titre abrégé: Med Microbiol Immunol
Pays: Germany
ID NLM: 0314524

Informations de publication

Date de publication:
Aug 2020
Historique:
received: 17 02 2020
accepted: 06 05 2020
pubmed: 9 6 2020
medline: 26 1 2021
entrez: 9 6 2020
Statut: ppublish

Résumé

Mast cells (MCs) are long-living immune cells highly specialized in the storage and release of different biologically active compounds and are involved in the regulation of innate and adaptive immunity. MC degranulation and replacement of MC granules are accompanied by active membrane remodelling. Tetraspanins represent an evolutionary conserved family of transmembrane proteins. By interacting with lipids and other membrane and intracellular proteins, they are involved in organisation of membrane protein complexes and act as "molecular facilitators" connecting extracellular and cytoplasmic signaling elements. MCs express different tetraspanins and MC degranulation is accompanied by changes in membrane organisation. Therefore, tetraspanins are very likely involved in the regulation of MC exocytosis and membrane reorganisation after degranulation. Antiviral response and production of exosomes are further aspects of MC function characterized by dynamic changes of membrane organization. In this review, we pay a particular attention to tetraspanin gene expression in different human and murine MC populations, discuss tetraspanin involvement in regulation of key MC signaling complexes, and analyze the potential contribution of tetraspanins to MC antiviral response and exosome production. In-depth knowledge of tetraspanin-mediated molecular mechanisms involved in different aspects of the regulation of MC response will be beneficial for patients with allergies, characterized by overwhelming MC reactions.

Identifiants

pubmed: 32507938
doi: 10.1007/s00430-020-00679-x
pii: 10.1007/s00430-020-00679-x
pmc: PMC7395004
doi:

Substances chimiques

Tetraspanins 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

531-543

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : GRK1727
Organisme : Deutsche Forschungsgemeinschaft
ID : B5
Organisme : Grantová Agentura České Republiky
ID : 20-16481S

Références

Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12:1035–1044. https://doi.org/10.1038/ni.2109
doi: 10.1038/ni.2109 pubmed: 22012443 pmcid: 3412172
St John AL, Abraham SN (2013) Innate immunity and its regulation by mast cells. J Immunol 190:4458–4463. https://doi.org/10.4049/jimmunol.1203420
doi: 10.4049/jimmunol.1203420 pubmed: 23606723
Voehringer D (2013) Protective and pathological roles of mast cells and basophils. Nat Rev Immunol 13:362–375. https://doi.org/10.1038/nri3427
doi: 10.1038/nri3427 pubmed: 23558889
Mukai K, Tsai M, Starkl P, Marichal T, Galli SJ (2016) IgE and mast cells in host defense against parasites and venoms. Semin Immunopathol 38:581–603. https://doi.org/10.1007/s00281-016-0565-1
doi: 10.1007/s00281-016-0565-1 pubmed: 27225312 pmcid: 5010491
Puri N, Roche PA (2008) Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc Natl Acad Sci USA 105:2580–2585. https://doi.org/10.1073/pnas.0707854105
doi: 10.1073/pnas.0707854105 pubmed: 18250339 pmcid: 2268179
Moon TC, Befus AD, Kulka M (2014) Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 5:569. https://doi.org/10.3389/fimmu.2014.00569
doi: 10.3389/fimmu.2014.00569 pubmed: 25452755 pmcid: 4231949
Gentek R, Ghigo C, Hoeffel G, Bulle MJ, Msallam R, Gautier G, Launay P, Chen J, Ginhoux F, Bajénoff M (2018) Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells. Immunity 48:1160–1171.e5. https://doi.org/10.1016/j.immuni.2018.04.025
doi: 10.1016/j.immuni.2018.04.025 pubmed: 29858009
Li Z, Liu S, Xu J, Zhang X, Han D, Liu J, Xia M, Yi L, Shen Q, Xu S, Lu L, Cao X (2018) Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors. Immunity 49:640–653.e5. https://doi.org/10.1016/j.immuni.2018.09.023
doi: 10.1016/j.immuni.2018.09.023 pubmed: 30332630
Gaudenzio N, Sibilano R, Marichal T, Starkl P, Reber LL, Cenac N, McNeil BD, Dong X, Hernandez JD, Sagi-Eisenberg R, Hammel I, Roers A, Valitutti S, Tsai M, Espinosa E, Galli SJ (2016) Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest 126:3981–3998. https://doi.org/10.1172/JCI85538
doi: 10.1172/JCI85538 pubmed: 27643442 pmcid: 5096814
Kraft S, Kinet JP (2007) New developments in FcεRI regulation, function and inhibition. Nat Rev Immunol 7:365–378. https://doi.org/10.1038/nri2072
doi: 10.1038/nri2072 pubmed: 17438574
Cohen R, Corwith K, Holowka D, Baird B (2012) Spatiotemporal resolution of mast cell granule exocytosis reveals correlation with Ca
doi: 10.1242/jcs.102632 pubmed: 22393234 pmcid: 3434823
Jolly PS, Rosenfeldt HM, Milstien S, Spiegel S (2002) The roles of sphingosine-1-phosphate in asthma. Mol Immunol 38:1239–1245. https://doi.org/10.1016/s0161-5890(02)00070-6
doi: 10.1016/s0161-5890(02)00070-6 pubmed: 12217390
Gonzalez-Espinosa C, Odom S, Olivera A, Hobson JP, Martinez ME, Oliveira-Dos-Santos A, Barra L, Spiegel S, Penninger JM, Rivera J (2003) Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J Exp Med 197:1453–1465. https://doi.org/10.1084/jem.20021806
doi: 10.1084/jem.20021806 pubmed: 12782712 pmcid: 2193904
Lu L, Kulka M, Unsworth LD (2017) Peptide-mediated mast cell activation: ligand similarities for receptor recognition and protease-induced regulation. J Leukoc Biol 102:237–251. https://doi.org/10.1189/jlb.3RU1216-539R
doi: 10.1189/jlb.3RU1216-539R pubmed: 28606938
Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811. https://doi.org/10.1038/nrm1736
doi: 10.1038/nrm1736 pubmed: 16314869
Charrin S, Jouannet S, Boucheix C, Rubinstein E (2014) Tetraspanins at a glance. J Cell Sci 127:3641–3648. https://doi.org/10.1242/jcs.154906
doi: 10.1242/jcs.154906 pubmed: 25128561
Hochheimer N, Sies R, Aschenbrenner AC, Schneider D, Lang T (2019) Classes of non-conventional tetraspanins defined by alternative splicing. Sci Rep 9:14075. https://doi.org/10.1038/s41598-019-50267-0
doi: 10.1038/s41598-019-50267-0 pubmed: 31575878 pmcid: 6773723
Termini CM, Gillette JM (2017) Tetraspanins function as regulators of cellular signaling. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2017.00034
doi: 10.3389/fcell.2017.00034 pubmed: 28428953 pmcid: 5382171
Huang C, Hays FA, Tomasek JJ, Benyajati S, Zhang XA (2019) Tetraspanin CD82 interaction with cholesterol promotes extracellular vesicle-mediated release of ezrin to inhibit tumour cell movement. J Extracell Vesicles 9:1692417. https://doi.org/10.1080/20013078.2019.1692417
doi: 10.1080/20013078.2019.1692417 pubmed: 31807237 pmcid: 6882436
Huang Y, Zucker B, Zhang S, Elias S, Zhu Y, Chen H, Ding T, Li Y, Sun Y, Lou J, Kozlov MM, Yu L (2019) Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nat Cell Biol 21:991–1002. https://doi.org/10.1038/s41556-019-0367-5
doi: 10.1038/s41556-019-0367-5 pubmed: 31371828
Zimmerman B, Kelly B, McMillan BJ, Seegar TCM, Dror RO, Kruse AC, Blacklow SC (2016) Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167:1041–1051.e11. https://doi.org/10.1016/j.cell.2016.09.056
doi: 10.1016/j.cell.2016.09.056 pubmed: 27881302 pmcid: 5127602
Zuidscherwoude M, Göttfert F, Dunlock VME, Figdor CG, van den Bogaart G, van Spriel AB (2015) The tetraspanin web revisited by super-resolution microscopy. Sci Rep 5:12201. https://doi.org/10.1038/srep12201
doi: 10.1038/srep12201 pubmed: 26183063 pmcid: 4505338
Gomes de Castro MA, Wildhagen H, Sograte-Idrissi S, Hitzing C, Binder M, Trepel M, Engels N, Opazo F (2019) Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane. Nat Commun 10:820. https://doi.org/10.1038/s41467-019-08677-1
doi: 10.1038/s41467-019-08677-1 pubmed: 30778055 pmcid: 6379438
DeSalle R, Sun T-T, Bergmann T, Garcia-España A. The evolution of tetraspanins through a phylogenetic lens. In: Berditchevski F, Rubinstein E (eds) Tetraspanins. Springer Netherlands, Dordrecht, pp 31–45 https://doi.org/10.1007/978-94-007-6070-7_2
Huang S, Yuan S, Dong M, Su J, Yu C, Shen Y, Xie X, Yu Y, Yu X, Chen S, Zhang S, Pontarotti P, Xu A (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell–cell interactions from unicellular to multicellular organisms. Genomics 86:674–684. https://doi.org/10.1016/j.ygeno.2005.08.004
doi: 10.1016/j.ygeno.2005.08.004 pubmed: 16242907
Resh MD Lipid modification of protein. In: Biochemistry of lipids, lipoproteins and membranes (Elsevier), pp 391–414 https://doi.org/10.1016/b978-0-444-63438-2.00013-4
Yang X (2002) Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 13:767–781. https://doi.org/10.1091/mbc.01-05-0275
doi: 10.1091/mbc.01-05-0275 pubmed: 11907260 pmcid: 99597
Rodenburg RNP, Snijder J, van de Waterbeemd M, Schouten A, Granneman J, Heck AJR, Gros P (2017) Stochastic palmitoylation of accessible cysteines in membrane proteins revealed by native mass spectrometry. Nat Commun 8:1280. https://doi.org/10.1038/s41467-017-01461-z
doi: 10.1038/s41467-017-01461-z pubmed: 29097667 pmcid: 5668376
Charrin S, Manié S, Thiele C, Billard M, Gerlier D, Boucheix C, Rubinstein E (2003) A physical and functional link between cholesterol and tetraspanins. Eur J Immunol 33:2479–2489. https://doi.org/10.1002/eji.200323884
doi: 10.1002/eji.200323884 pubmed: 12938224
Lineberry N, Su L, Soares L, Fathman CG (2008) The single subunit transmembrane E3 ligase gene related to anergy in lymphocytes (GRAIL) captures and then ubiquitinates transmembrane proteins across the cell membrane. J Biol Chem 283:28497–28505. https://doi.org/10.1074/jbc.M805092200
doi: 10.1074/jbc.M805092200 pubmed: 18713730 pmcid: 2568916
Wang Y, Tong X, Omoregie ES, Liu W, Meng S, Ye X (2012) Tetraspanin 6 (TSPAN6) negatively regulates retinoic acid-inducible gene I-like receptor-mediated immune signaling in a ubiquitination-dependent manner. J Biol Chem 287:34626-3434. https://doi.org/10.1074/jbc.M112.390401
doi: 10.1074/jbc.M112.390401
Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C, Williams J, Ashman L, Eble JA, Berditchevski F (2008) Tetraspanin CD151 regulates glycosylation of α3β1 integrin. J Biol Chem 283:35445–35454. https://doi.org/10.1074/jbc.M806394200
doi: 10.1074/jbc.M806394200 pubmed: 18852263
Shoham T, Rajapaksa R, Kuo C-C, Haimovich J, Levy S (2006) Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Mol Cell Biol 26:1373–1385. https://doi.org/10.1128/MCB.26.4.1373-1385.2006
doi: 10.1128/MCB.26.4.1373-1385.2006 pubmed: 16449649 pmcid: 1367195
Lapalombella R, Yeh YY, Wang L, Ramanunni A, Rafiq S, Jha S, Staubli J, Lucas DM, Mani R, Herman SE, Johnson AJ, Lozanski A, Andritsos L, Jones J, Flynn JM, Lannutti B, Thompson P, Algate P, Stromatt S, Jarjoura D, Mo X, Wang D, Chen CS, Lozanski G, Heerema NA, Tridandapani S, Freitas MA, Muthusamy N, Byrd JC (2012) Tetraspanin CD37 directly mediates transduction of survival and apoptotic signals. Cancer Cell 21:694–708. https://doi.org/10.1016/j.ccr.2012.03.040
doi: 10.1016/j.ccr.2012.03.040 pubmed: 22624718 pmcid: 3360882
Jouannet S, Saint-Pol J, Fernandez L, Nguyen V, Charrin S, Boucheix C, Brou C, Milhiet PE, Rubinstein E (2016) TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell Mol Life Sci 73:1895–1915. https://doi.org/10.1007/s00018-015-2111-z
doi: 10.1007/s00018-015-2111-z pubmed: 26686862
Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators FASEB J 11:428–442
pubmed: 9194523
Agis H, Füreder W, Bankl HC, Kundi M, Sperr WR, Willheim M, Boltz-Nitulescu G, Butterfield JH, Kishi K, Lechner K, Valent P (1996) Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes. Immunology 87:535–543. https://doi.org/10.1046/j.1365-2567.1996.493578.x
doi: 10.1046/j.1365-2567.1996.493578.x pubmed: 8675206 pmcid: 1384130
Füreder W, Bankl HC, Toth J, Walchshofer S, Sperr W, Agis H, Semper H, Sillaber C, Lechner K, Valent P (1997) Immunophenotypic and functional characterization of human tonsillar mast cells. J Leukoc Biol 61:592–599. https://doi.org/10.1002/jlb.61.5.592
doi: 10.1002/jlb.61.5.592 pubmed: 9129208
Ghannadan M, Baghestanian M, Wimazal F, Eisenmenger M, Latal D, Kargül G, Walchshofer S, Sillaber C, Lechner K, Valent P (1998) Phenotypic characterization of human skin mast cells by combined staining with toluidine blue and CD antibodies. J Invest Dermatol 111:689–695. https://doi.org/10.1046/j.1523-1747.1998.00359.x
doi: 10.1046/j.1523-1747.1998.00359.x pubmed: 9764855
Krauth MT, Majlesi Y, Florian S, Bohm A, Hauswirth AW, Ghannadan M, Wimazal F, Raderer M, Wrba F, Valent P (2005) Cell surface membrane antigen phenotype of human gastrointestinal mast cells. Int Arch Allergy Immunol 138:111–120. https://doi.org/10.1159/000088432
doi: 10.1159/000088432 pubmed: 16179791
Köberle M, Kaesler S, Kempf W, Wölbing F, Biedermann T (2012) Tetraspanins in mast cells. Front Immunol 3:106. https://doi.org/10.3389/fimmu.2012.00106
doi: 10.3389/fimmu.2012.00106 pubmed: 22783251 pmcid: 3346162
Halova I, Draber P (2016) Tetraspanins and transmembrane adaptor proteins as plasma membrane organizers-mast cell case. Front Cell Dev Biol 4:43. https://doi.org/10.3389/fcell.2016.00043
doi: 10.3389/fcell.2016.00043 pubmed: 27243007 pmcid: 4861716
Bulfone-Paus S, Nilsson G, Draber P, Blank U, Levi-Schaffer F (2017) Positive and negative signals in mast cell activation. Trends Immunol 38:657–667. https://doi.org/10.1016/j.it.2017.01.008
doi: 10.1016/j.it.2017.01.008 pubmed: 28254170
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U (2018) Non-IgE mediated mast cell activation. Immunol Rev 282:87–113. https://doi.org/10.1111/imr.12629
doi: 10.1111/imr.12629 pubmed: 29431205
Dwyer DF, Barrett NA, Austen KF; Immunological Genome Project Consortium (2016) Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat Immunol 17:878–887. https://doi.org/10.1038/ni.3445
doi: 10.1038/ni.3445
Chhiba KD, Hsu CL, Berdnikovs S, Bryce PJ (2017) Transcriptional heterogeneity of mast cells and basophils upon activation. J Immunol 198:4868–4878. https://doi.org/10.4049/jimmunol.1601825
doi: 10.4049/jimmunol.1601825 pubmed: 28476932
Eschenbrenner E, Jouannet S, Clay D, Chaker J, Boucheix C, Brou C, Tomlinson MG, Charrin S, Rubinstein E (2019) TspanC8 tetraspanins differentially regulate ADAM10 endocytosis and half-life. Life Sci Alliance. https://doi.org/10.26508/lsa.201900444
doi: 10.26508/lsa.201900444 pubmed: 31792032 pmcid: 6892437
Fleming TJ, Donnadieu E, Song CH, Laethem FV, Galli SJ, Kinet JP (1997) Negative regulation of Fc epsilon RI-mediated degranulation by CD81. J Exp Med 186:1307–1314. https://doi.org/10.1084/jem.186.8.1307
doi: 10.1084/jem.186.8.1307 pubmed: 9334370 pmcid: 2199099
Kraft S, Fleming T, Billingsley JM, Lin SY, Jouvin MH, Storz P, Kinet JP (2005) Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo. J Exp Med 201:385–396. https://doi.org/10.1084/jem.20042085
doi: 10.1084/jem.20042085 pubmed: 15684326 pmcid: 2213034
Hálová I, Dráberová L, Bambousková M, Machyna M, Stegurová L, Smrž D, Dráber P (2013) Cross-talk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis. J Biol Chem 288:9801–9814. https://doi.org/10.1074/jbc.m112.449231
doi: 10.1074/jbc.m112.449231 pubmed: 23443658 pmcid: 3617281
Kraft S, Jouvin MH, Kulkarni N, Kissing S, Morgan ES, Dvorak AM, Schröder B, Saftig P, Kinet JP (2013) The tetraspanin CD63 is required for efficient IgE-mediated mast cell degranulation and anaphylaxis. J Immunol 191:2871–2878. https://doi.org/10.4049/jimmunol.1202323
doi: 10.4049/jimmunol.1202323 pubmed: 23945142
Abdala-Valencia H, Bryce PJ, Schleimer RP, Wechsler JB, Loffredo LF, Cook-Mills JM, Hsu CL, Berdnikovs S (2015) Tetraspanin CD151 is a negative regulator of FcεRI-mediated mast cell activation. J Immunol 195:1377–1387. https://doi.org/10.4049/jimmunol.1302874
doi: 10.4049/jimmunol.1302874 pubmed: 26136426
Wang J, Zhou Y, Li D, Sun X, Deng Y, Zhao Q (2017) TSPAN31 is a critical regulator on transduction of survival and apoptotic signals in hepatocellular carcinoma cells. FEBS Lett 591:2905–2918. https://doi.org/10.1002/1873-3468.12737
doi: 10.1002/1873-3468.12737 pubmed: 28670683
Jankowski SA, Mitchell DS, Smith SH, Trent JM, Meltzer PS (1994) SAS, a gene amplified in human sarcomas, encodes a new member of the transmembrane 4 superfamily of proteins. Oncogene 9:1205–1211
pubmed: 8134123
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419, http://www.proteinatlas.org , https://doi.org/10.1126/science.1260419 . Accessed 10 Feb 2020
Heng TS, Painter MW; Immunological Genome Project Consortium (2008) The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 9:1091-1094 https://doi.org/10.1038/ni1008-1091 , http://www.immgen.org . Accessed 10 Feb 2020
Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, Asplund A, Björk L, Breckels LM, Bäckström A, Danielsson F, Fagerberg L, Fall J, Gatto L, Gnann C, Hober S, Hjelmare M, Johansson F, Lee S, Lindskog C, Mulder J, Mulvey CM, Nilsson P, Oksvold P, Rockberg J, Schutten R, Schwenk JM, Sivertsson Å, Sjöstedt E, Skogs M, Stadler C, Sullivan DP, Tegel H, Winsnes C, Zhang C, Zwahlen M, Mardinoglu A, Pontén F, von Feilitzen K, Lilley KS, Uhlén M, Lundberg E (2017) A subcellular map of the human proteome. Science 356, http://www.proteinatlas.org , https://doi.org/10.1126/science.aal3321 . Accessed 10 Feb 2020
Otsubo C, Otomo R, Miyazaki M, Matsushima-Hibiya Y, Kohno T, Iwakawa R, Takeshita F, Okayama H, Ichikawa H, Saya H, Kiyono T, Ochiya T, Tashiro F, Nakagama H, Yokota J, Enari M (2014) TSPAN2 is involved in cell invasion and motility during lung cancer progression. Cell Rep 7:527–538. https://doi.org/10.1016/j.celrep.2014.03.027
doi: 10.1016/j.celrep.2014.03.027 pubmed: 24726368
Noy PJ, Yang J, Reyat JS, Matthews AL, Charlton AE, Furmston J, Rogers DA, Rainger GE, Tomlinson MG (2016) TspanC8 tetraspanins and A disintegrin and metalloprotease 10 (ADAM10) interact via their extracellular regions: evidence for distinct binding mechanisms for different TspanC8 proteins. J Biol Chem 291:3145–3157. https://doi.org/10.1074/jbc.M115.703058
doi: 10.1074/jbc.M115.703058 pubmed: 26668317
Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI, Bronstein JM (2001) OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol 153:295–305. https://doi.org/10.1083/jcb.153.2.295
doi: 10.1083/jcb.153.2.295 pubmed: 11309411 pmcid: 2169454
Motakis E, Guhl S, Ishizu Y, Itoh M, Kawaji H, de Hoon M, Lassmann T, Carninci P, Hayashizaki Y, Zuberbier T, Forrest AR, Babina M, FANTOM consortium (2014) Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood 123:e58–67. https://doi.org/10.1182/blood-2013-02-483792
doi: 10.1182/blood-2013-02-483792 pubmed: 24671954 pmcid: 3999759
Gschwandtner M, Paulitschke V, Mildner M, Brunner PM, Hacker S, Eisenwort G, Sperr WR, Valent P, Gerner C, Tschachler E (2017) Proteome analysis identifies L1CAM/CD171 and DPP4/CD26 as novel markers of human skin mast cells. Allergy 72:85–97. https://doi.org/10.1111/all.12919
doi: 10.1111/all.12919 pubmed: 27091730
Palm NW, Rosenstein RK, Medzhitov R (2012) Allergic host defences. Nature 484:465–472. https://doi.org/10.1038/nature11047
doi: 10.1038/nature11047 pubmed: 22538607
McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X (2015) Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519:237–241. https://doi.org/10.1038/nature14022
doi: 10.1038/nature14022 pubmed: 25517090
Peng WM, Yu CF, Kolanus W, Mazzocca A, Bieber T, Kraft S, Novak N (2011) Tetraspanins CD9 and CD81 are molecular partners of trimeric FcɛRI on human antigen-presenting cells. Allergy 66:605–611. https://doi.org/10.1111/j.1398-9995.2010.02524.x
doi: 10.1111/j.1398-9995.2010.02524.x pubmed: 21241315
Kaji K, Takeshita S, Miyake K, Takai T, Kudo A (2001) Functional association of CD9 with the Fc gamma receptors in macrophages. J Immunol 166:3256–3265. https://doi.org/10.4049/jimmunol.166.5.3256
doi: 10.4049/jimmunol.166.5.3256 pubmed: 11207280
Noy PJ, Gavin RL, Colombo D, Haining EJ, Reyat JS, Payne H, Thielmann I, Lokman AB, Neag G, Yang J, Lloyd T, Harrison N, Heath VL, Gardiner C, Whitworth KM, Robinson J, Koo CZ, Di Maio A, Harrison P, Lee SP, Michelangeli F, Kalia N, Rainger GE, Nieswandt B, Brill A, Watson SP, Tomlinson MG (2019) Tspan18 is a novel regulator of the Ca
doi: 10.3324/haematol.2018.194241 pubmed: 30573509 pmcid: 6717597
Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114:4143–4151
doi: 10.1242/jcs.114.23.4143 pubmed: 11739647
Sperr WR, Agis H, Czerwenka K, Klepetko W, Kubista E, Boltz-Nitulescu G, Lechner K, Valent P (1992) Differential expression of cell surface integrins on human mast cells and human basophils. Ann Hematol 65:10–16. https://doi.org/10.1007/bf01715119
doi: 10.1007/bf01715119 pubmed: 1643154
Oki T, Kitaura J, Eto K, Lu Y, Maeda-Yamamoto M, Inagaki N, Nagai H, Yamanishi Y, Nakajima H, Kumagai H, Kitamura T (2006) Integrin alpha IIb beta3 induces the adhesion and activation of mast cells through interaction with fibrinogen. J Immunol 176:52–60. https://doi.org/10.4049/jimmunol.176.1.52
doi: 10.4049/jimmunol.176.1.52 pubmed: 16365395
Oki T, Eto K, Izawa K, Yamanishi Y, Inagaki N, Frampton J, Kitamura T, Kitaura J (2009) Evidence that integrin alpha IIb beta 3-dependent interaction of mast cells with fibrinogen exacerbates chronic inflammation. J Biol Chem 284:31463–31472. https://doi.org/10.1074/jbc.M109.030213
doi: 10.1074/jbc.M109.030213 pubmed: 19755424 pmcid: 2781542
Chang GW, Hsiao CC, Peng YM, Vieira Braga FA, Kragten NA, Remmerswaal EB, van de Garde MD, Straussberg R, König GM, Kostenis E, Knäuper V, Meyaard L, van Lier RA, van Gisbergen KP, Lin HH, Hamann J (2016) The Adhesion G protein-coupled receptor GPR56/ADGRG1 is an inhibitory receptor on human NK cells. Cell Rep 15:1757–1770. https://doi.org/10.1016/j.celrep.2016.04.053
doi: 10.1016/j.celrep.2016.04.053 pubmed: 27184850
Qiao Y, Tam JKC, Tan SSL, Tai YK, Chin CY, Stewart AG, Ashman L, Sekiguchi K, Langenbach SY, Stelmack G, Halayko AJ, Tran T, Melbourne Epidemiological Study of Childhood Asthma group (2017) CD151, a laminin receptor showing increased expression in asthmatic patients, contributes to airway hyperresponsiveness through calcium signaling. J Allergy Clin Immunol 139:82–92.e5. https://doi.org/10.1016/j.jaci.2016.03.029
doi: 10.1016/j.jaci.2016.03.029 pubmed: 27233153
Okayama Y, Kawakami T (2006) Development, migration, and survival of mast cells. Immunol Res 34:97–115. https://doi.org/10.1385/IR:34:2:97
doi: 10.1385/IR:34:2:97 pubmed: 16760571 pmcid: 1490026
Gilfillan AM, Rivera J (2009) The tyrosine kinase network regulating mast cell activation. Immunol Rev 228:149–169. https://doi.org/10.1111/j.1600-065X.2008.00742.x
doi: 10.1111/j.1600-065X.2008.00742.x pubmed: 19290926 pmcid: 2669301
Ito T, Smrž D, Jung MY, Bandara G, Desai A, Smržová Š, Kuehn HS, Beaven MA, Metcalfe DD, Gilfillan AM (2012) Stem cell factor programs the mast cell activation phenotype. J Immunol 188:5428–5437. https://doi.org/10.4049/jimmunol.1103366
doi: 10.4049/jimmunol.1103366 pubmed: 22529299
Anzai N, Lee Y, Youn BS, Fukuda S, Kim YJ, Mantel C, Akashi M, Broxmeyer HE (2002) C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors. Blood 99:4413–4421. https://doi.org/10.1182/blood.v99.12.4413
doi: 10.1182/blood.v99.12.4413 pubmed: 12036870
Haining EJ, Yang J, Bailey RL, Khan K, Collier R, Tsai S, Watson SP, Frampton J, Garcia P, Tomlinson MG (2012) The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem 287:39753-3965. https://doi.org/10.1074/jbc.m112.416503
doi: 10.1074/jbc.m112.416503
Faber TW, Pullen NA, Fernando JF, Kolawole EM, McLeod JJ, Taruselli M, Williams KL, Rivera KO, Barnstein BO, Conrad DH, Ryan JJ (2014) ADAM10 is required for SCF-induced mast cell migration. Cell Immunol 290:80–88. https://doi.org/10.1016/j.cellimm.2014.05.005
doi: 10.1016/j.cellimm.2014.05.005 pubmed: 24950026 pmcid: 4128322
Mayerhofer M, Gleixner KV, Hoelbl A, Florian S, Hoermann G, Aichberger KJ, Bilban M, Esterbauer H, Krauth MT, Sperr WR, Longley JB, Kralovics R, Moriggl R, Zappulla J, Liblau RS, Schwarzinger I, Sexl V, Sillaber C, Valent P (2008) Unique effects of KIT D816V in BaF3 cells: induction of cluster formation, histamine synthesis, and early mast cell differentiation antigens. J Immunol 180:5466–5547. https://doi.org/10.4049/jimmunol.180.8.5466
doi: 10.4049/jimmunol.180.8.5466 pubmed: 18390729
Metcalfe DD, Pawankar R, Ackerman SJ, Akin C, Clayton F, Falcone FH, Gleich GJ, Irani AM, Johansson MW, Klion AD, Leiferman KM, Levi-Schaffer F, Nilsson G, Okayama Y, Prussin C, Schroeder JT, Schwartz LB, Simon HU, Walls AF, Triggiani M (2016) Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organ J 9:7. https://doi.org/10.1186/s40413-016-0094-3
doi: 10.1186/s40413-016-0094-3 pubmed: 26904159 pmcid: 4751725
Kabashima K, Nakashima C, Nonomura Y, Otsuka A, Cardamone C, Parente R, De Feo G, Triggiani M (2018) Biomarkers for evaluation of mast cell and basophil activation. Immunol Rev 282:114–120. https://doi.org/10.1111/imr.12639
doi: 10.1111/imr.12639 pubmed: 29431209
Knol EF, Mul FP, Jansen H, Calafat J, Roos D (1991) Monitoring human basophil activation via CD63 monoclonal antibody 435. J Allergy Clin Immunol 88:328–338. https://doi.org/10.1016/0091-6749(91)90094-5
doi: 10.1016/0091-6749(91)90094-5 pubmed: 1716273
Hoffmann HJ, Santos AF, Mayorga C, Nopp A, Eberlein B, Ferrer M, Rouzaire P, Ebo DG, Sabato V, Sanz ML, Pecaric-Petkovic T, Patil SU, Hausmann OV, Shreffler WG, Korosec P, Knol EF (2015) The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy 70:1393–1405. https://doi.org/10.1111/all.12698
doi: 10.1111/all.12698 pubmed: 26198455
Valent P, Schernthaner GH, Sperr WR, Fritsch G, Agis H, Willheim M, Bühring HJ, Orfao A, Escribano L (2001) Variable expression of activation-linked surface antigens on human mast cells in health and disease. Immunol Rev 179:74–81. https://doi.org/10.1034/j.1600-065X.2001.790108.x
doi: 10.1034/j.1600-065X.2001.790108.x pubmed: 11292030
Grützkau A, Smorodchenko A, Lippert U, Kirchhof L, Artuc M, Henz BM (2004) LAMP-1 and LAMP-2, but not LAMP-3, are reliable markers for activation-induced secretion of human mast cells. Cytom A 61:62–68. https://doi.org/10.1002/cyto.a.20068
doi: 10.1002/cyto.a.20068
Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584–1592. https://doi.org/10.1016/j.yexcr.2008.09.020
doi: 10.1016/j.yexcr.2008.09.020 pubmed: 18930046
Schäfer T, Starkl P, Allard C, Wolf RM, Schweighoffer T (2010) A granular variant of CD63 is a regulator of repeated human mast cell degranulation. Allergy 65:1242–1255. https://doi.org/10.1111/j.1398-9995.2010.02350.x
doi: 10.1111/j.1398-9995.2010.02350.x pubmed: 20337613
Bühring HJ, Simmons PJ, Pudney M, Müller R, Jarrossay D, van Agthoven A, Willheim M, Brugger W, Valent P, Kanz L (1999) The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood 94:2343–2356
pubmed: 10498606
McGowan EC, Saini S (2013) Update on the performance and application of basophil activation tests. Curr Allergy Asthma Rep 13:101–109. https://doi.org/10.1007/s11882-012-0324-x
doi: 10.1007/s11882-012-0324-x pubmed: 23188565 pmcid: 4078398
Depince-Berger AE, Sidi-Yahya K, Jeraiby M, Lambert C (2017) Basophil activation test: implementation and standardization between systems and between instruments. Cytom A 91:261–269. https://doi.org/10.1002/cyto.a.23078
doi: 10.1002/cyto.a.23078
Kӓllquist L, Hansson M, Persson AM, Janssen H, Calafat J, Tapper H, Olsson I (2008) The tetraspanin CD63 is involved in granule targeting of neutrophil elastase. Blood 112:3444–3454. https://doi.org/10.1182/blood-2007-10-116285
doi: 10.1182/blood-2007-10-116285
Braciale TJ, Sun J (2012) Kim TS (2012) Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol 12:295–305. https://doi.org/10.1038/nri3166
doi: 10.1038/nri3166 pubmed: 22402670 pmcid: 3364025
Narni-Mancinelli E, Ugolini S, Vivier E (2013) Tuning the threshold of natural killer cell responses. Curr Opin Immunol 25:53–58. https://doi.org/10.1016/j.coi.2012.11.005
doi: 10.1016/j.coi.2012.11.005 pubmed: 23270590
Marshall JS, Portales-Cervantes L, Leong E (2019) Mast cell responses to viruses and pathogen products. Int J Mol Sci. https://doi.org/10.3390/ijms20174241
doi: 10.3390/ijms20174241 pubmed: 31739401 pmcid: 6888638
Monk PN, Partridge LJ (2012) Tetraspanins: gateways for infection. Infect Disord Drug Targets 12:4–17. https://doi.org/10.2174/187152612798994957
doi: 10.2174/187152612798994957 pubmed: 22034932
Suárez H, Rocha-Perugini V, Álvarez S, Yáñez-Mó M (2018) Tetraspanins, another piece in the HIV-1 replication puzzle. Front Immunol 9:1811. https://doi.org/10.3389/fimmu.2018.01811
doi: 10.3389/fimmu.2018.01811 pubmed: 30127789 pmcid: 6088189
Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998) Binding of hepatitis C virus to CD81. Science 282:938–941. https://doi.org/10.1126/science.282.5390.938
doi: 10.1126/science.282.5390.938 pubmed: 9794763
Sato K, Aoki J, Misawa N, Daikoku E, Sano K, Tanaka Y, Koyanagi Y (2008) Modulation of human immunodeficiency virus type 1 infectivity through incorporation of tetraspanin proteins. J Virol 82:1021–1033. https://doi.org/10.1128/JVI.01044-07
doi: 10.1128/JVI.01044-07 pubmed: 17989173
Li G, Dziuba N, Friedrich B, Murray JL, Ferguson MR (2011) A post-entry role for CD63 in early HIV-1 replication. Virology 412:315–324. https://doi.org/10.1016/j.virol.2011.01.017
doi: 10.1016/j.virol.2011.01.017 pubmed: 21315401
Fukuda M, Ushio H, Kawasaki J, Niyonsaba F, Takeuchi M, Baba T, Hiramatsu K, Okumura K, Ogawa H (2013) Expression and functional characterization of retinoic acid-inducible gene-I-like receptors of mast cells in response to viral infection. J Innate Immun 5:163–173. https://doi.org/10.1159/000343895
doi: 10.1159/000343895 pubmed: 23171655
Matsushima H, Yamada N, Matsue H, Shimada S (2004) TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173:531–541. https://doi.org/10.4049/jimmunol.173.1.531
doi: 10.4049/jimmunol.173.1.531 pubmed: 15210814
Khan NS, Lukason DP, Feliu M, Ward RA, Lord AK, Reedy JL, Ramirez-Ortiz ZG, Tam JM, Kasperkovitz PV, Negoro PE, Vyas TD, Xu S, Brinkmann MM, Acharaya M, Artavanis-Tsakonas K, Frickel EM, Becker CE, Dagher Z, Kim YM, Latz E, Ploegh HL, Mansour MK, Miranti CK, Levitz SM, Vyas JM (2019) CD82 controls CpG-dependent TLR9 signaling. FASEB J. 33:12500–12514. https://doi.org/10.1096/fj.201901547R
doi: 10.1096/fj.201901547R pubmed: 31408613 pmcid: 6988855
Rocha-Perugini V, Suárez H, Álvarez S, López-Martín S, Lenzi GM, Vences-Catalán F, Levy S, Kim B, Muñoz-Fernández MA, Sánchez-Madrid F, Yáñez-Mó M (2017) CD81 association with SAMHD1 enhances HIV-1 reverse transcription by increasing dNTP levels. Nat Microbiol 2:1513–1522. https://doi.org/10.1038/s41564-017-0019-0
doi: 10.1038/s41564-017-0019-0 pubmed: 28871089 pmcid: 5660623
Sundstrom JB, Ellis JE, Hair GA, Kirshenbaum AS, Metcalfe DD, Yi H, Cardona AC, Lindsay MK, Ansari AA (2007) Human tissue mast cells are an inducible reservoir of persistent HIV infection. Blood 109:5293–5300. https://doi.org/10.1182/blood-2006-11-058438
doi: 10.1182/blood-2006-11-058438 pubmed: 17351109
Jiang AP, Jiang JF, Wei JF, Guo MG, Qin Y, Guo QQ, Ma L, Liu BC, Wang X, Veazey RS, Ding YB, Wang JH (2015) Human mucosal mast cells capture HIV-1 and mediate viral trans-infection of CD4 + T cells. J Virol 90:2928–2937. https://doi.org/10.1128/JVI.03008-15
doi: 10.1128/JVI.03008-15 pubmed: 26719250
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596
doi: 10.1038/ncb1596 pubmed: 17486113
Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172:923–935. https://doi.org/10.1083/jcb.200508014
doi: 10.1083/jcb.200508014 pubmed: 16533950 pmcid: 2063735
Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208. https://doi.org/10.1038/nri3622
doi: 10.1038/nri3622 pubmed: 24566916 pmcid: 4350779
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066. https://doi.org/10.3402/jev.v4.27066
doi: 10.3402/jev.v4.27066 pubmed: 25979354
Kim DK, Lee J, Kim SR, Choi DS, Yoon YJ, Kim JH, Go G, Nhung D, Hong K, Jang SC, Kim SH, Park KS et al (2015) EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 31:933–939. https://doi.org/10.1093/bioinformatics/btu741
doi: 10.1093/bioinformatics/btu741 pubmed: 25388151
Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10:e1001450. https://doi.org/10.1371/journal.pbio.1001450
doi: 10.1371/journal.pbio.1001450 pubmed: 23271954 pmcid: 3525526
Vukman KV, Försönits A, Oszvald Á, Tóth EÁ, Buzás EI (2017) Mast cell secretome: soluble and vesicular components. Semin Cell Dev Biol 67:65–73. https://doi.org/10.1016/j.semcdb.2017.02.002
doi: 10.1016/j.semcdb.2017.02.002 pubmed: 28189858
Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113:3365–3374
doi: 10.1242/jcs.113.19.3365 pubmed: 10984428
Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8:2631–2645. https://doi.org/10.1091/mbc.8.12.2631
doi: 10.1091/mbc.8.12.2631 pubmed: 9398681 pmcid: 25733
Skokos D, Le Panse S, Villa I, Rousselle J-C, Peronet R, David B, Namane A, Mécheri S (2001) Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol 166:868–876. https://doi.org/10.4049/jimmunol.166.2.868
doi: 10.4049/jimmunol.166.2.868 pubmed: 11145662
Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S, Mécheri S (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170:3037–3045. https://doi.org/10.4049/jimmunol.170.6.3037
doi: 10.4049/jimmunol.170.6.3037 pubmed: 12626558
Tkaczyk C, Villa I, Peronet R, David B, Chouaib S, Mecheri S (2000) In vitro and in vivo immunostimulatory potential of bone marrow-derived mast cells on B- and T-lymphocyte activation. J Allergy Clin Immunol 105:134–142. https://doi.org/10.1016/s0091-6749(00)90188-x
doi: 10.1016/s0091-6749(00)90188-x pubmed: 10629463
Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856. https://doi.org/10.1038/sj.leu.2404132
doi: 10.1038/sj.leu.2404132 pubmed: 16453000
Kandere-Grzybowska K, Letourneau R, Kempuraj D, Donelan J, Poplawski S, Boucher W, Athanassiou A, Theoharides TC (2003) IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J Immunol 171:4830–4836. https://doi.org/10.4049/jimmunol.171.9.4830
doi: 10.4049/jimmunol.171.9.4830 pubmed: 14568962
Eldh M, Ekström K, Valadi H, Sjöstrand M, Olsson B, Jernås M, Lötvall J (2010) Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 5:e15353. https://doi.org/10.1371/journal.pone.0015353
doi: 10.1371/journal.pone.0015353 pubmed: 21179422 pmcid: 3003701
Groot Kormelink T, Arkesteijn GJ, van de Lest CH, Geerts WJ, Goerdayal SS, Altelaar MA, Redegeld FA, Nolte-’t Hoen EN, Wauben MH (2016) Mast cell degranulation is accompanied by the release of a selective subset of extracellular vesicles that contain mast cell-specific proteases. J Immunol 197:3382–3392. https://doi.org/10.4049/jimmunol.1600614
doi: 10.4049/jimmunol.1600614 pubmed: 27619994
Carroll-Portillo A, Surviladze Z, Cambi A, Lidke DS, Wilson BS (2012) Mast cell synapses and exosomes: membrane contacts for information exchange. Front Immunol 3:46. https://doi.org/10.3389/fimmu.2012.00046
doi: 10.3389/fimmu.2012.00046 pubmed: 22566928 pmcid: 3342342
Kim DK, Cho YE, Komarow HD, Bandara G, Song BJ, Olivera A, Metcalfe DD (2018) Mastocytosis-derived extracellular vesicles exhibit a mast cell signature, transfer KIT to stellate cells, and promote their activation. Proc Natl Acad Sci USA 115:E10692–E10701. https://doi.org/10.1073/pnas.1809938115
doi: 10.1073/pnas.1809938115 pubmed: 30352845 pmcid: 6233074
Liang Y, Qiao L, Peng X, Cui Z, Yin Y, Liao H, Jiang M, Li L (2018) The chemokine receptor CCR1 is identified in mast cell-derived exosomes. Am J Transl Res 10:352–367
pubmed: 29511430 pmcid: 5835801
Rabelo Melo F, Santosh Martin S, Sommerhoff CP, Pejler G (2019) Exosome-mediated uptake of mast cell tryptase into the nucleus of melanoma cells: a novel axis for regulating tumor cell proliferation and gene expression. Cell Death Dis. 10:659. https://doi.org/10.1038/s41419-019-1879-4
doi: 10.1038/s41419-019-1879-4 pubmed: 31506436 pmcid: 6736983
Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, Buzás EI, Lötvall J (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.20677
doi: 10.3402/jev.v2i0.20677 pubmed: 24223256 pmcid: 3823106
Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887. https://doi.org/10.1093/intimm/dxh267
doi: 10.1093/intimm/dxh267 pubmed: 15908444
Ekström K, Valadi H, Sjöstrand M, Malmhäll C, Bossios A, Eldh M, Lötvall J (2012) Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. J Extracell Vesicles. https://doi.org/10.3402/jev.v1i0.18389
doi: 10.3402/jev.v1i0.18389 pubmed: 24009880 pmcid: 3760639
Rana S, Zöller M (2011) Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans 39:559–562. https://doi.org/10.1042/BST0390559
doi: 10.1042/BST0390559 pubmed: 21428939
Rana S, Yue S, Stadel D, Zöller M (2012) Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 44:1574–1584. https://doi.org/10.1016/j.biocel.2012.06.018
doi: 10.1016/j.biocel.2012.06.018 pubmed: 22728313
Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, Morey R, Liu J, Roszik J, Clise-Dwyer K, Burks JK, O’Halloran TJ, Laurent LC, Sood AK (2019) Mechanisms of nuclear content loading to exosomes. Sci Adv 5:eaax8849. https://doi.org/10.1126/sciadv.aax8849
doi: 10.1126/sciadv.aax8849 pubmed: 31799396 pmcid: 6867874

Auteurs

Zane Orinska (Z)

Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany. zorinska@fz-borstel.de.

Philipp M Hagemann (PM)

Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.

Ivana Halova (I)

Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.

Petr Draber (P)

Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH