The evolution of physical and technical performance parameters in the Chinese Soccer Super League.

Chinese soccer Evolution Longitudinal Match analysis Physical fitness

Journal

Biology of sport
ISSN: 0860-021X
Titre abrégé: Biol Sport
Pays: Poland
ID NLM: 8700872

Informations de publication

Date de publication:
Jun 2020
Historique:
received: 29 10 2019
revised: 27 11 2019
accepted: 23 01 2020
entrez: 9 6 2020
pubmed: 9 6 2020
medline: 9 6 2020
Statut: ppublish

Résumé

Performance analysis in soccer has attained greater importance for coaching staff in order to gather and manage useful information (i.e., physical, technical, and tactical) of their teams during consecutive seasons. Accordingly, we examined the evolution of physical and technical performance parameters in the Chinese Soccer Super League (CSL). Data were collected from 1,429 CSL matches from the 2012 season to the 2017 season using the Amisco Pro (Amisco, Nice, France) system. Fourteen technical performance-related indicators and 11 physical performance-related indicators were analysed using a mixed linear model for repeated measures. Significant main effects of season were followed up using the Bonferroni correction (multiple comparisons). Although there were some irregularities, performance variables generally showed significant upward trends across the six seasons (p<0.05), resulting in significant increases from the 2012 season to the 2017 season in the total sprint distance (2,069.7±509.3 m vs. 2,272±493.6 m; p<0.001; effect size [ES]: 0.40), number of sprints (100.1±22.8 vs. 104.8±20.8, p<0.001; ES: 0.22), high-speed distance (2568.4±503.5 m vs. 2823.1±479.2 m; (p<0.001; ES: 0.52), and high-speed effort (187.5±36.1 to 204.7±33.7; p<0.001; ES: 0.49). Furthermore, there were ~23% more crosses (p<0.001; ES: 0.45), ~12% more shots on target (p<0.001; ES: 0.22), and ~11% more opponent penalty area entries (p<0.001; ES: 0.20) during the 2017 season than in the 2012 season. Coaches and sports scientists should be mindful of this evolution when preparing training sessions and recruiting new players, and even when predicting future trends in the Chinese Soccer Super League.

Identifiants

pubmed: 32508381
doi: 10.5114/biolsport.2020.93039
pii: 93039
pmc: PMC7249799
doi:

Types de publication

Journal Article

Langues

eng

Pagination

139-145

Informations de copyright

Copyright © Biology of Sport 2020.

Déclaration de conflit d'intérêts

Authors state no conflict of interest.

Références

J Sports Sci. 2012;30(14):1455-61
pubmed: 22856388
Int J Sports Med. 2014 Dec;35(13):1095-100
pubmed: 25009969
J Sports Sci. 2010 Feb;28(3):237-44
pubmed: 20391095
J Strength Cond Res. 2017 Aug;31(8):2155-2161
pubmed: 28737610
Res Sports Med. 2019 Jul-Sep;27(3):314-325
pubmed: 30375238
J Sports Sci. 2014;32(11):1076-83
pubmed: 24506111
J Sports Sci. 2016 Dec;34(24):2195-2204
pubmed: 27052355
J Sports Sci. 2014 Dec;32(20):1831-1843
pubmed: 24787442
J Sports Sci Med. 2012 Sep 01;11(3):533-6
pubmed: 24149364
Hum Mov Sci. 2015 Feb;39:1-11
pubmed: 25461429
Res Sports Med. 2018 Apr-Jun;26(2):158-167
pubmed: 29382229
Eur J Sport Sci. 2016 Aug;16(5):516-25
pubmed: 26190577
J Sports Sci. 2012;30(7):625-31
pubmed: 22394328
Eur J Appl Physiol. 2011 Jun;111(6):969-78
pubmed: 21082197
Int J Sports Physiol Perform. 2006 Mar;1(1):50-7
pubmed: 19114737
J Sci Med Sport. 2014 Mar;17(2):223-8
pubmed: 23643671

Auteurs

Changjing Zhou (C)

Facultad de Ciencias de la Actividad Física y del deporte, INEF-Madrid Universidad Politécnica de Madrid, Madrid, España.

Miguel-Ángel Gómez (MÁ)

Facultad de Ciencias de la Actividad Física y del deporte, INEF-Madrid Universidad Politécnica de Madrid, Madrid, España.

Alberto Lorenzo (A)

Facultad de Ciencias de la Actividad Física y del deporte, INEF-Madrid Universidad Politécnica de Madrid, Madrid, España.

Classifications MeSH