Brain Activation for Audiovisual Information in People With One Eye Compared to Binocular and Eye-Patched Viewing Controls.
audiovisual processing
fMRI
monocular enucleation
multisensory
sensory deprivation
Journal
Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481
Informations de publication
Date de publication:
2020
2020
Historique:
received:
13
02
2020
accepted:
29
04
2020
entrez:
9
6
2020
pubmed:
9
6
2020
medline:
9
6
2020
Statut:
epublish
Résumé
Blindness caused by early vision loss results in complete visual deprivation and subsequent changes in the use of the remaining intact senses. We have also observed adaptive plasticity in the case of partial visual deprivation. The removal of one eye, through unilateral eye enucleation, results in partial visual deprivation and is a unique model for examining the consequences of the loss of binocularity. Partial deprivation of the visual system from the loss of one eye early in life results in behavioral and structural changes in the remaining senses, namely auditory and audiovisual systems. In the current study we use functional neuroimaging data to relate function and behavior of the audiovisual system in this rare patient group compared to controls viewing binocularly or with one eye patched. In Experiment 1, a whole brain analysis compared common regions of cortical activation between groups, for auditory, visual and audiovisual stimuli. People with one eye demonstrated a trend for increased activation for low-level audiovisual stimuli compared to patched viewing controls but did not differ from binocular viewing controls. In Experiment 2, a region of interest (ROI) analysis for auditory, visual, audiovisual and illusory McGurk stimuli revealed that people with one eye had an increased trend for left hemisphere audiovisual activation for McGurk stimuli compared to binocular viewing controls. This aligns with current behavioral analysis and previous research showing reduced McGurk Effect in people with one eye. Furthermore, there is no evidence of a correlation between behavioral performance on the McGurk Effect task and functional activation. Together with previous behavioral work, these functional data contribute to the broader understanding of cross-sensory effects of early sensory deprivation from eye enucleation. Overall, these results contribute to a better understanding of the sensory deficits experienced by people with one eye, as well as, the relationship between behavior, structure and function in order to better predict the outcome of early partial visual deafferentation.
Identifiants
pubmed: 32508588
doi: 10.3389/fnins.2020.00529
pmc: PMC7253581
doi:
Types de publication
Journal Article
Langues
eng
Pagination
529Informations de copyright
Copyright © 2020 Moro, Gorbet and Steeves.
Références
Multisens Res. 2018 Jan 1;31(7):675-688
pubmed: 31264607
Invest Ophthalmol Vis Sci. 2014 Apr 24;55(5):3158-64
pubmed: 24764068
Neuroimage Clin. 2019;24:102006
pubmed: 31622842
Exp Brain Res. 2018 Jun;236(6):1825-1834
pubmed: 29675714
Neurosci Lett. 2013 Nov 27;556:186-90
pubmed: 24103371
Nature. 1998 Jul 16;394(6690):274-7
pubmed: 9685156
Neuropsychologia. 2002;40(12):1868-72
pubmed: 12207985
Comput Biomed Res. 1996 Jun;29(3):162-73
pubmed: 8812068
Atten Percept Psychophys. 2010 Aug;72(6):1450-4
pubmed: 20675792
Brain. 2014 Jan;137(Pt 1):288-93
pubmed: 24271326
J Exp Psychol Hum Percept Perform. 2012 Dec;38(6):1517-29
pubmed: 22390292
Exp Brain Res. 2012 Feb;216(3):367-73
pubmed: 22105335
Elife. 2018 Nov 26;7:
pubmed: 30475210
Neuroimage. 2012 Jan 2;59(1):781-7
pubmed: 21787869
Multisens Res. 2018 Jan 1;31(1-2):111-144
pubmed: 31264597
Nature. 1998 Sep 17;395(6699):278-80
pubmed: 9751055
Neuroimage Clin. 2014 Dec 03;7:297-305
pubmed: 25610793
Neurology. 2000 Jun 27;54(12):2203-4
pubmed: 10881239
Percept Psychophys. 1985 Jul;38(1):91-6
pubmed: 4069964
Neurosci Lett. 2018 Apr 13;672:103-107
pubmed: 29474874
Neurology. 2007 Feb 27;68(9):691-3
pubmed: 17325278
Exp Eye Res. 2019 Jun;183:57-61
pubmed: 30291860
J Physiol. 2015 Oct 1;593(19):4361-72
pubmed: 26119530
Multisens Res. 2014;27(3-4):173-88
pubmed: 25577901
J Neurosci. 2000 Apr 1;20(7):2664-72
pubmed: 10729347
Eur J Neurosci. 2002 Sep;16(5):930-6
pubmed: 12372029
Nature. 1997 Sep 11;389(6647):180-3
pubmed: 9296495
Neuroimage Clin. 2013 Nov 01;4:72-81
pubmed: 24319655
Exp Brain Res. 2012 Feb;216(4):565-74
pubmed: 22130779
Neurosci Biobehav Rev. 2020 May;112:542-552
pubmed: 32092315
J Neurosci. 2003 Apr 15;23(8):3439-45
pubmed: 12716952
Optom Vis Sci. 2012 Feb;89(2):137-47
pubmed: 22198795
Neuroreport. 2009 Jan 28;20(2):132-8
pubmed: 19104453
Vision Res. 2019 Apr;157:274-281
pubmed: 29567099
Nature. 1999 Jul 8;400(6740):162-6
pubmed: 10408442
Nature. 1996 Apr 11;380(6574):526-8
pubmed: 8606771
Spat Vis. 2008;21(6):509-29
pubmed: 19017480
Vision Res. 2004 Apr;44(9):943-9
pubmed: 14992838
Neuroimage Clin. 2015 Oct 09;9:513-8
pubmed: 26594632
Exp Brain Res. 2009 Jan;192(3):343-58
pubmed: 18762928
J Neurosci. 2010 Feb 17;30(7):2414-7
pubmed: 20164324
Hum Brain Mapp. 2018 Jan;39(1):133-144
pubmed: 28963811