Haplotype-based genome-wide association studies reveal new loci for haematological and clinical-biochemical parameters in Large White pigs.
Sus scrofa
QTL
alkaline phosphatase
blood parameter
creatine kinase
electrolyte
enzyme
erythrocyte
leukocyte
Journal
Animal genetics
ISSN: 1365-2052
Titre abrégé: Anim Genet
Pays: England
ID NLM: 8605704
Informations de publication
Date de publication:
Aug 2020
Aug 2020
Historique:
received:
30
11
2019
revised:
24
02
2020
accepted:
02
05
2020
pubmed:
9
6
2020
medline:
21
11
2020
entrez:
9
6
2020
Statut:
ppublish
Résumé
We report haplotype-based GWASs for 33 blood parameters measured in 843 Italian Large White pigs. In the single-trait analysis, a total of 30 QTL for number of basophils, six erythrocyte traits (haemoglobin, haematocrit, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, mean corpuscular volume and red blood cell count) and two clinical-biochemical traits (alkaline phosphatase and Ca
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
601-606Subventions
Organisme : Ministero degli Affari Esteri e della Cooperazione Internazionale
Organisme : Ministero dell'Istruzione, dell'Università e della Ricerca
ID : PRIN2017 - PigPhenomics
Organisme : Università di Bologna
ID : RFO2017-2018
Organisme : Ministero delle politiche agricole alimentari e forestali
Informations de copyright
© 2020 Stichting International Foundation for Animal Genetics.
Références
Astle W.J., Elding H., Jiang T. et al. (2016) The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415-29.
Bovo S., Schiavo G., Mazzoni G. et al. (2016) Genome-wide association study for the level of serum electrolytes in Italian Large White pigs. Animal Genetics 47, 597-602.
Bovo S., Mazzoni G., Bertolini F. et al. (2019) Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes. Scientific Reports 9, 7003.
Chambers J.C., Zhang W., Sehmi J. et al. (2011) Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nature Genetics 43, 1131-8.
Delaneau O., Marchini J., Zagury J.-F. (2012) A linear complexity phasing method for thousands of genomes. Nature Methods 9, 179-81.
Etim N.N., Williams M.E., Akpabio U., Offiong E.E.A. (2014) Haematological parameters and factors affecting their values. Agricultural Science 2, 37-47.
Gan Q.F., Li Y.R., Lund M., Su G.S., Liang X.W. (2019) Genome-wide association study identifies loci linked to serum electrolyte traits in Chinese Holstein cattle. Animal Genetics 50, 744-8.
Gong Y.-F., Lu X., Wang Z.-P. et al. (2010) Detection of quantitative trait loci affecting haematological traits in swine via genome scanning. BMC Genetics 11, 56.
Kichaev G., Bhatia G., Loh P.-R. et al. (2019) Leveraging polygenic functional enrichment to improve GWAS power. American Journal of Human Genetics 104, 65-75.
Ma X., Jia C., Fu D. et al. (2019) Analysis of hematological traits in polled yak by genome-wide association studies using individual SNPs and haplotypes. Genes (Basel) 10, E463.
Okada Y., Kamatani Y. (2012) Common genetic factors for hematological traits in Humans. Journal of Human Genetics 57, 161-9.
Pilling L.C., Atkins J.L., Duff M.O. et al. (2017) Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers. PLoS ONE 12, e0185083.
Ponsuksili S., Reyer H., Trakooljul N., Murani E., Wimmers K. (2016) Single- and Bayesian multi-marker genome-wide association for haematological parameters in pigs. PLoS ONE 11, e0159212.
Reiner G., Fischer R., Hepp S., Berge T., Köhler F., Willems H. (2007) Quantitative trait loci for red blood cell traits in swine. Animal Genetics 38, 447-52.
Reiner G., Clemens N., Fischer R. et al. (2009) Mapping of quantitative trait loci for clinical-chemical traits in swine. Animal Genetics 40, 57-64.
Reyer H., Oster M., Wittenburg D., Murani E., Ponsuksili S., Wimmers K. (2019) Genetic contribution to variation in blood calcium, phosphorus, and alkaline phosphatase activity in pigs. Frontiers in Genetics 10, 590.
Sun Y., Li Q., Hu Y. et al. (2016) Genomewide association study of immune traits in chicken F2 resource population. Journal of Animal Breeding and Genetics 133, 197-206.
Teslovich T.M., Musunuru K., Smith A.V. et al. (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707-13.
Utsunomiya Y.T., Milanesi M., Utsunomiya A.T.H., Ajmone-Marsan P., Garcia J.F. (2016) GHap: an R package for genome-wide haplotyping. Bioinformatics 32, 2861-2.
Vasquez L.J., Mann A.L., Chen L., Soranzo N. (2016) From GWAS to function: lessons from blood cells. ISBT Science Series 11, 211-9.
Wei Y.J., Tsai K.S., Lin L.C. et al. (2011) Catechin stimulates osteogenesis by enhancing PP2A activity in human mesenchymal stem cells. Osteoporosis International 22, 1469-79.
Willer C.J., Schmidt E.M., Sengupta S. et al. (2013) Discovery and refinement of loci associated with lipid levels. Nature Genetics 45, 1274-83.
Yan G., Guo T., Xiao S. et al. (2018) Imputation-based whole-genome sequence association study reveals constant and novel loci for hematological traits in a large-scale swine F2 resource population. Frontiers in Genetics 9, 401.
Zhang Z., Hong Y., Gao J. et al. (2013) Genome-wide association study reveals constant and specific loci for hematological traits at three time stages in a White Duroc × Erhualian F2 resource population. PLoS ONE 8, e63665.
Zhang F., Zhang Z., Yan X. et al. (2014) Genome-wide association studies for hematological traits in Chinese Sutai pigs. BMC Genetics 15, 41.
Zhou X., Stephens M. (2012) Genome-wide efficient mixed model analysis for association studies. Nature Genetics 44, 821-4.
Zhu F., Cui Q.-Q., Yang Y., Hao J.-P., Yang F.-X., Hou Z.-C. (2020) Genome-wide association study of the level of blood components in Pekin ducks. Genomics 112, 379-87.