Engineering and use of proteinoid polymers and nanocapsules containing agrochemicals.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 06 2020
08 06 2020
Historique:
received:
31
10
2019
accepted:
27
04
2020
entrez:
10
6
2020
pubmed:
10
6
2020
medline:
10
6
2020
Statut:
epublish
Résumé
To address global challenges such as population growth and climate change, introduction of new technologies and innovations in agriculture are paramount. Polymer-based formulations of agrochemicals have received much attention in recent years, and there is strong motivation to develop agrochemicals that are not harmful to the environment. Proteinoid polymers are produced by thermal step-growth polymerization of natural and unnatural amino acids. Under suitable gentle conditions, the proteinoid polymers may self-assemble to form nano-sized hollow proteinoid nanoparticles (NPs) of a relatively narrow size distribution. Agrochemical molecules may be encapsulated within these hollow proteinoid NPs, integrated in the crude proteinoid shell, or bound covalently/physically to the NP surface. In the present manuscript we prepared and characterized four model proteinoid polymers and NPs: P(KEf), P(KF), P(EWH-PLLA) and P(KWH-PLLA), where Ef denotes the unnatural herbicidal amino acid glufosinate. The NPs were fluorescently labeled and loaded with agrochemicals such as the plant hormone auxin. In addition, the NP surface was hydrophobized by covalent conjugation of dodecyl aldehyde via its surface primary amine groups. Following treatment of the plants with the different fluorescent-labeled NPs, fluorescent microscopic techniques enabled to localize the NPs and observe the accumulation in the plant's vascular system. Next, using genetically modified plants, which express fluorescent protein and are responsive to the level of auxin, we demonstrated the possibility to deliver encapsulated agrochemicals into cells. We also illustrated that the proteinoid NPs are non-toxic to human umbilical vein endothelial cells, and apart from P(KEf) also to lettuce plants.
Identifiants
pubmed: 32514082
doi: 10.1038/s41598-020-66172-w
pii: 10.1038/s41598-020-66172-w
pmc: PMC7280236
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9171Références
GR, G. Smarter Pest Control. Science 341 (2013).
Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018).
pubmed: 29736032
doi: 10.1038/s41565-018-0131-1
Fox, S. W. Thermal Synthesis of Amino Acids and the Origin of Life. Geochim. Cosmochim. Acta 59, 1213–1214 (1995).
pubmed: 11540049
doi: 10.1016/0016-7037(95)00037-Z
Fox, S. W. & Waehneldt, T. V. The Thermal Synthesis of Neutral and Basic Proteinoids. Biochim. Biophys. Acta 160, 246–249 (1968).
pubmed: 5658125
doi: 10.1016/0005-2795(68)90093-7
Fox, S. W. & Harada, K. The Thermal Copolymerization of Amino Acids Common to Protein. Am. Chem. Soc. 82, 3745–3751 (1960).
doi: 10.1021/ja01499a069
Kolitz-domb, M., Grinberg, I., Corem-salkmon, E. & Margel, S. Engineered Narrow Size Distribution High Molecular Weight Proteinoids, Proteinoid-Poly (L-Lactic Acid) Copolymers and Nano/Micro-Hollow Particles for Biomedical Applications. Nanomed Nanotechnol. 5, 2–10 (2014).
Kolitz-domb, M., Grinberg, I., Corem-salkmon, E. & Margel, S. Synthesis and Characterization of Bioactive Conjugated Near-Infrared Fluorescent Proteinoid-Poly (L-lactic acid) Hollow Nanoparticles for Optical Detection of Colon Cancer. Int. J. Nanomedicine 9, 5401–5453 (2014).
Sason, E., Kolitz-domb, M., Cohen, S., Grinberg, I. & Margel, S. Engineering of New Proteinoids and Proteinoid Nanoparticles of Narrow Size Distribution for Anti-fog Applications. J. Nanomed. Nanotechnol. 8, 1–9 (2017).
Kiel, S., Kolitz-Domb, M., Corem-Salkmon, E. & Margel, S. Engineered Doxorubicin Delivery System Using Proteinoid-Poly (L-Lactic Acid) Polymeric Nanoparticles of Narrow Size Distribution and High Molecular Weight for Cancer Treatment. Int. J. Nanotechnol. Nanomedicine 2, 1–11, https://doi.org/10.33140/IJNN.02.01.00008 (2017).
doi: 10.33140/IJNN.02.01.00008
Belostozky, A., Kolitz-Domb, M., Haham, H., Grinberg, I. & Margel, S. Engineering of New UV-Blocking Hollow Proteinoid Nanoparticles of Narrow Size Distribution Containing All-trans Retinoic Acid for Biomedical Applications. J. Nanomed. Nanotechnol. 08, 1–9 (2017).
A. M. Kumar, K. P. R. Preparation and Characterization of pH-Sensitive Proteinoid Microspheres for the Oral Delivery of Methotrexate. Biomaterials 19, 725–732 (1998).
doi: 10.1016/S0142-9612(97)00188-9
Xinghang, M. et al. Stability Study of Drug-loaded Proteinoid Microsphere Formulations during Freeze-drying. J. Drug Target. 2, 9–21 (1994).
doi: 10.3109/10611869409015889
Quirk, S. Triggered release of small molecules from proteinoid microspheres. J. Biomed. Mater. Res. - Part A 91, 391–399 (2009).
doi: 10.1002/jbm.a.32241
Santiago, N. et al. Oral Immunization of Rats with Proteinoid Microspheres Encapsulating Influenza Virus Antigens. Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists 10, 1243–1247 (1993).
doi: 10.1023/A:1018992924025
Kolitz-Domb, M., Grinberg, I., Corem-Salkmon, E. & Margel, S. Engineering of Near Infrared Fluorescent Proteinoid-Poly(L-lactic acid) Particles for in Vivo Colon Cancer Detection. J. Nanobiotechnology 12, 1–13 (2014).
doi: 10.1186/s12951-014-0030-z
Kolitz-Domb, M. & Margel, S. Engineered Narrow Size Distribution High Molecular Weight Proteinoids, Proteinoid-Poly(L-lactic acid) Copolymers and Nano/Micro-Hollow Particles for Biomedical Applications. J. Nanomed. Nanotechnol. 05, 1–10 (2014).
doi: 10.4172/2157-7439.1000216
Fox, S., Nakashima, T., Aleksander, P. & Syren, R. M. The Updated Experimental Proteinoid Model. Int. J. Nanomedicine 22, 195–204 (1982).
Kokufuta, E., Sakai, H. & Harada, K. Factors Controlling the Size of Proteinoid Microspheres. BioSystems 16, 175–181 (1984).
doi: 10.1016/0303-2647(83)90002-3
Kolitz-Domb, M. & Margel, S. Recent Advances of Novel Proteinoids and Proteinoid Nanoparticles and Their Applications in Biomedicine and Industrial Uses. Isr. J. Chem. 58, 1277–1285 (2018).
doi: 10.1002/ijch.201800021
Shikanov, A., Kumar, N. & Domb, A. Biodegradable Polymers: An Update. Isr. J. Chem. 45, 393–399 (2005).
doi: 10.1560/ATQM-MQ02-GLDU-EF6L
Harada, K. & Fox, S. W. The Thermal Condensation of Glutamic Acid and Glycine to Linear Peptides. Am. Chem. Soc. 80, 2694–2697 (1958).
doi: 10.1021/ja01544a027
Harada, K. & Matsuyama, M. Polycondensation of Thermal Precursors of Amino Acids and Characterization of Constituent Amino Acids. BioSystems 11, 47–53 (1979).
pubmed: 465656
doi: 10.1016/0303-2647(79)90019-4
Bahn, P. & Pappelis, A. Protocell-Like Microspheres from Thermal Polyaspartic Acid. Orig. life Evol. Biosph. 36, 617–619 (2006).
pubmed: 17120121
doi: 10.1007/s11084-006-9044-3
R.M. Syren, A. & Sanjur, S. W. F. Proteinoid Microspheres More Stable in Hot Than in Cold Water. Biosystems. 17, 275–280 (1985).
doi: 10.1016/0303-2647(85)90043-7
Kliot, A. et al. Fluorescence in Situ Hybridizations (FISH) for the Localization of Viruses and Endosymbiotic Bacteria in Plant and Insect Tissues. J. Vis. Exp. 1–8 https://doi.org/10.3791/51030 (2014).
Lanone, S. et al. Comparative Toxicity of 24 Manufactured Nanoparticles in Human Alveolar Epithelial and Macrophage Cell Lines. Part. Fibre Toxicol. 6, 14 (2009).
pubmed: 19405955
pmcid: 2685765
doi: 10.1186/1743-8977-6-14
Pattison, R. J. & Catalá, C. Evaluating Auxin Distribution in Tomato (Solanum lycopersicum) Through an Analysis of the PIN and AUX/LAX Gene Families. Plant J. 70, 585–598 (2012).
pubmed: 22211518
doi: 10.1111/j.1365-313X.2011.04895.x
Chen, H. & Langer, R. Oral particulate delivery: Status and future trends. Adv. Drug Deliv. Rev. 34, 339–350 (1998).
pubmed: 10837685
doi: 10.1016/S0169-409X(98)00047-7
R. Rosen, S. S. Delivery Systems for Pharmacological Agents Encapsulated with Proteinods. U.S. Pat. 4(925), 673 (1990).
Fox, S. W., Jungck, J. R. & Nakashima, T. From Proteinoid Microsphere to Contemporary Cell - Formation of Internucleotide and Peptide-Bonds by Proteinoid Particles. Orig. Life 5, 227–237 (1974).
pubmed: 4842072
doi: 10.1007/BF00927027
Clément, L., Hurel, C. & Marmier, N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - Effects of size and crystalline structure. Chemosphere 90, 1083–1090 (2013).
pubmed: 23062945
doi: 10.1016/j.chemosphere.2012.09.013
Chen, F. et al. On the Efficiency of NHS Ester Cross-Linkers for Stabilizing Integral Membrane Protein Complexes. J. Am. Soc. Mass Spectrom. 26, 493–498 (2015).
pubmed: 25404159
doi: 10.1007/s13361-014-1035-4
Mädler, S., Bich, C., Touboul, D. & Zenobi, R. Chemical Cross-Linking with NHS Esters: A Systematic Study on Amino Acid Reactivities. J. Mass Spectrom. 44, 694–706 (2009).
pubmed: 19132714
doi: 10.1002/jms.1544
Kalkhof, S. & Sinz, A. Chances and Pitfalls of Chemical Cross-Linking with Amine-Reactive N-Hydroxysuccinimide Esters. Anal. Bioanal. Chem. 392, 1–8 (2008).
doi: 10.1007/s00216-008-2231-5
Covarrubias, G. et al. Imaging Breast Cancer Using a Dual-Ligand Nanochain Particle. PLoS One 13, 1–15 (2018).
doi: 10.1371/journal.pone.0204296
Steinmetz, H. P., Rudnick-glick, S., Natan, M., Banin, E. & Margel, S. Poly (styryl bisphosphonate) Nanoparticles with a Narrow Size Distribution: Synthesis, Characterization and Antibacterial Applications. Eur. Polym. J. 116, 65–73 (2019).
doi: 10.1016/j.eurpolymj.2019.04.007
Halivni, S., Sitt, A., Hadar, I. & Banin, U. Effect of nanoparticle dimensionality on fluorescence resonance energy transfer in nanoparticle-dye conjugated systems. ACS Nano 6, 2758–2765 (2012).
pubmed: 22314148
doi: 10.1021/nn300216v
Muddana, H. S., Morgan, T. T., Adair, J. H. & Butler, P. J. Photophysics of Cy3-Encapsulated Calcium Phosphate Nanoparticles. NANO Lett. 9, 1559–1566 (2008).
doi: 10.1021/nl803658w
Cordes, E. H. & Jencks, W. P. On the Mechanism of Schiff Base Formation and Hydrolysis. J. Am. Chem. Soc. 84, 832–837 (1962).
doi: 10.1021/ja00864a031
Higueras, L., López-Carballo, G., Gavara, R. & Hernández-Muñoz, P. Reversible Covalent Immobilization of Cinnamaldehyde on Chitosan Films via Schiff Base Formation and Their Application in Active Food Packaging. Food Bioprocess Technol. 8, 526–538 (2014).
doi: 10.1007/s11947-014-1421-8
Müller-Herold, U. & Nickel, G. The Stability of Proteinoid Microspheres. Biosystems 33, 215–220 (1994).
pubmed: 7888612
doi: 10.1016/0303-2647(94)90006-X
Kolitz-Domb, M. & Margel, S. Engineered Narrow Size Distribution High Molecular Weight Proteinoids, Proteinoid-Poly(L-lactic acid) Copolymers and Nano/Micro-Hollow Particles for Biomedical Applications. J. Nanomed. Nanotechnol. 05, 1–10 (2014).
doi: 10.4172/2157-7439.1000216
Tan, S., Evans, R. & Singh, B. Herbicidal Inhibitors of Amino Acid Biosynthesis and Herbicide-Tolerant Crops. Amino Acids 30, 195–204 (2006).
pubmed: 16547651
doi: 10.1007/s00726-005-0254-1
Dayan, F. E., Cantrell, C. L. & Duke, S. O. Natural products in crop protection. Bioorganic Med. Chem. 17, 4022–4034 (2009).
doi: 10.1016/j.bmc.2009.01.046
Jonāne, L. Analogies in Science Education. Pedagogika 119, 116–125 (2015).
doi: 10.15823/p.2015.027
Li, S. B., Xie, Z. Z., Hu, C. G. & Zhang, J. Z. A review of auxin response factors (ARFs) in plants. Front. Plant Sci. 7, 1–7 (2016).
Heisler, M. G. et al. Patterns of Auxin Transport and Gene Expression During Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Curr. Biol. 15, 1899–1911 (2005).
pubmed: 16271866
doi: 10.1016/j.cub.2005.09.052
Reddy, K. N., Zablotowicz, R. M., Bellaloui, N. & Ding, W. Glufosinate Effects on Nitrogen Nutrition, Growth, Yield, and Seed Composition in Glufosinate-Resistant and Glufosinate-Sensitive Soybean. Int. J. Agron. 2011, 1–9 (2011).
doi: 10.1155/2011/109280
Schinko, E., Schad, K., Eys, S., Keller, U. & Wohlleben, W. Phosphinothricin-Tripeptide Biosynthesis: An Original Version of Bacterial Secondary Metabolism? Phytochemistry 70, 1787–1800 (2009).
pubmed: 19878959
doi: 10.1016/j.phytochem.2009.09.002
Williams, G. M., Kroes, R. & Munro, I. C. Safety Evaluation and Risk Assessment of the Herbicide Roundup and its Active Ingredient, Glyphosate, for Humans. Regul. Toxicol. Pharmacol. 31, 117–165 (2000).
pubmed: 10854122
doi: 10.1006/rtph.1999.1371
Lluis, M., Nogue, S. & Miro, O. Severe Acute Poisoning Due to a Glufosinate Containing Preparation without Mitochondrial Involvement. Hum. Exp. Toxicol. 27, 519–524 (2008).
pubmed: 18784206
doi: 10.1177/0960327108092291
P Sharma, B. N. et al. Protective Effect of Eucalyptus Extract on Glufosinate Ammonium Induced Hepatotoxicity in Wister Rats. Int. J. Appl. Biol. Pharm. Technol. 9, 16–23 (2018).
Thongprakaisang, S., Thiantanawat, A., Rangkadilok, N., Suriyo, T. & Satayavivad, J. Glyphosate Induces Human Breast Cancer Cells Growth Via Estrogen Receptors. Food Chem. Toxicol. 59, 129–136 (2013).
pubmed: 23756170
doi: 10.1016/j.fct.2013.05.057
Castro, M. J. L., Ojeda, C. & Cirelli, A. F. Advances in surfactants for agrochemicals. Environ. Chem. Lett. 12, 85–95 (2014).
doi: 10.1007/s10311-013-0432-4
Cone, R. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. 104, 1482–1487 (2007).
pubmed: 17244708
doi: 10.1073/pnas.0608611104
Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J. & Schroeder, A. Therapeutic nanopartricles penetrate leaves and deliver nutrients to agricultural crops. Sci. Rep. 8, 7589 (2018).
pubmed: 29773873
pmcid: 5958142
doi: 10.1038/s41598-018-25197-y