The Dynamic Life of Virus Capsids.
antibodies
flexibility
norovirus
rhinovirus
Journal
Viruses
ISSN: 1999-4915
Titre abrégé: Viruses
Pays: Switzerland
ID NLM: 101509722
Informations de publication
Date de publication:
05 06 2020
05 06 2020
Historique:
received:
15
05
2020
revised:
01
06
2020
accepted:
02
06
2020
entrez:
11
6
2020
pubmed:
11
6
2020
medline:
13
2
2021
Statut:
epublish
Résumé
Protein-shelled viruses have been thought as "tin cans" that merely carry the genomic cargo from cell to cell. However, through the years, it has become clear that viruses such as rhinoviruses and caliciviruses are active and dynamic structures waiting for the right environmental cues to deliver their genomic payload to the host cell. In the case of human rhinoviruses, the capsid has empty cavities that decrease the energy required to cause conformational changes, resulting in the capsids "breathing", waiting for the moment when the receptor binds for it to release its genome. Most strikingly, the buried N-termini of VP1 and VP4 are transiently exposed during this process. A more recent example of a "living" protein capsid is mouse norovirus (MNV). This family of viruses have a large protruding (P) domain that is loosely attached to the shell via a single-polypeptide tether. Small molecules found in the gut, such as bile salts, cause the P domains to rotate and collapse onto the shell surface. Concomitantly, bile alters the conformation of the P domain itself from one that binds antibodies to one that recognizes receptors. In this way, MNV appears to use capsid flexibility to present one face to the immune system and a completely different one to attack the host tissue. Therefore, it appears that even protein-shelled viruses have developed an impressive array of tricks to dodge our immune system and efficiently attack the host.
Identifiants
pubmed: 32516952
pii: v12060618
doi: 10.3390/v12060618
pmc: PMC7354500
pii:
doi:
Substances chimiques
Viral Proteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIAID NIH HHS
ID : R01 AI141465
Pays : United States
Organisme : NIH HHS
ID : 1R01-AI141465
Pays : United States
Références
Trends Microbiol. 2004 Jun;12(6):279-87
pubmed: 15165606
Nature. 1990 Oct 11;347(6293):569-72
pubmed: 1699132
J Virol. 2007 Jun;81(12):6307-15
pubmed: 17428846
Structure. 1993 Sep 15;1(1):51-68
pubmed: 7915182
J Infect Dis. 2013 Dec 1;208(11):1877-87
pubmed: 23908476
Biophys J. 1999 Mar;76(3):1270-9
pubmed: 10049311
J Mol Biol. 1994 Jul 8;240(2):127-37
pubmed: 8027997
J Virol. 1983 Nov;48(2):547-50
pubmed: 6194315
mSphere. 2018 Feb 7;3(1):
pubmed: 29435493
J Virol. 2018 May 14;92(11):
pubmed: 29563286
J Virol. 1993 Mar;67(3):1148-58
pubmed: 7679742
J Virol. 1985 Jan;53(1):137-43
pubmed: 2981332
mSphere. 2017 Oct 18;2(5):
pubmed: 29062895
Adv Virus Res. 1999;52:1-23
pubmed: 10384234
J Virol. 1993 Jan;67(1):390-7
pubmed: 8093221
J Virol. 2010 Jun;84(11):5695-705
pubmed: 20335262
Proc Natl Acad Sci U S A. 1988 May;85(10):3304-8
pubmed: 2835768
J Virol. 1989 May;63(5):2002-7
pubmed: 2539499
J Mol Biol. 1994 Jul 15;240(3):256-64
pubmed: 8028008
J Virol. 2014 Apr;88(8):4543-57
pubmed: 24501415
Arch Virol Suppl. 1996;12:237-42
pubmed: 9015120
Science. 2016 Aug 26;353(6302):933-6
pubmed: 27540007
J Virol. 1993 Jun;67(6):3126-33
pubmed: 8388493
Emerg Infect Dis. 2013 Aug;19(8):1198-205
pubmed: 23876403
Nature. 1985 Sep 12-18;317(6033):145-53
pubmed: 2993920
J Biol Chem. 1998 Dec 11;273(50):33835-40
pubmed: 9837974
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6774-8
pubmed: 9618488
Science. 1999 Oct 8;286(5438):287-90
pubmed: 10514371
Pharm Pat Anal. 2018 Jul;7(4):137-140
pubmed: 29882720
Cold Spring Harb Symp Quant Biol. 1962;27:101-12
pubmed: 13961307
FASEB J. 1998 Jun;12(9):695-703
pubmed: 9619448
Arch Virol. 1986;91(3-4):207-20
pubmed: 3022677
J Virol. 2009 Jul;83(14):7040-8
pubmed: 19403680
J Virol. 2012 Apr;86(7):3635-46
pubmed: 22278249
Nature. 1996 Sep 26;383(6598):350-4
pubmed: 8848050
Proc Natl Acad Sci U S A. 1988 Aug;85(15):5449-53
pubmed: 2840661
Nat Rev Microbiol. 2010 Mar;8(3):231-41
pubmed: 20125087
EMBO J. 2000 Dec 1;19(23):6317-25
pubmed: 11101504
Immunochemistry. 1972 Mar;9(3):325-40
pubmed: 4556115
EMBO J. 1999 Nov 15;18(22):6249-59
pubmed: 10562537
Virology. 1976 Feb;69(2):500-10
pubmed: 176784
J Virol. 2004 Jun;78(12):6233-42
pubmed: 15163716
J Virol. 1986 Jan;57(1):246-57
pubmed: 2416951
Antimicrob Agents Chemother. 1986 Jul;30(1):110-6
pubmed: 3019232
mBio. 2013 Jul 16;4(4):
pubmed: 23860770
Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):507-11
pubmed: 8093643
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9175-80
pubmed: 18599458
Science. 1986 Sep 19;233(4770):1286-93
pubmed: 3018924
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9201-E9210
pubmed: 30194229
J Virol. 2019 Mar 5;93(6):
pubmed: 30602609
J Virol. 1998 Jun;72(6):4610-22
pubmed: 9573224
Proteins. 1989;6(1):1-19
pubmed: 2558377
J Virol. 1989 Jan;63(1):36-42
pubmed: 2535737
Emerg Infect Dis. 2007 Jan;13(1):144-6
pubmed: 17370531
Virology. 1962 Feb;16:163-76
pubmed: 13908367
Emerg Infect Dis. 2018 Aug;24(8):1453-1464
pubmed: 30014841
Science. 2016 Sep 23;353(6306):1387-1393
pubmed: 27562956
Virology. 1999 Mar 15;255(2):260-8
pubmed: 10069951
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):8017-8022
pubmed: 28696310
J Gen Virol. 2014 Sep;95(Pt 9):1958-1968
pubmed: 24899153
J Virol. 2008 Mar;82(5):2079-88
pubmed: 18094184
Virology. 1956 Apr;2(2):162-205
pubmed: 13312221
J Infect Dis. 2006 Feb 1;193(3):413-21
pubmed: 16388489
J Virol. 1983 May;46(2):466-74
pubmed: 6188863
Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7015-8
pubmed: 8394005
J Virol. 2019 Sep 12;93(19):
pubmed: 31341042
J Virol. 2003 Dec;77(24):13117-24
pubmed: 14645568