Dehydrogenation of ethanol to acetaldehyde with nitrous oxide over the metal-organic framework NU-1000: a density functional theory study.
Journal
Physical chemistry chemical physics : PCCP
ISSN: 1463-9084
Titre abrégé: Phys Chem Chem Phys
Pays: England
ID NLM: 100888160
Informations de publication
Date de publication:
24 Jun 2020
24 Jun 2020
Historique:
pubmed:
11
6
2020
medline:
11
6
2020
entrez:
11
6
2020
Statut:
ppublish
Résumé
The conversion of ethanol to more valuable hydrocarbon compounds receives great attention in chemical industries because it could diminish the dependency on petroleum as raw material. We investigate the catalytic performance of Fe-supported MOF NU-1000 for the dehydrogenation of ethanol to acetaldehyde with nitrous oxide (N2O) by deriving the relevant reaction profiles with density functional theory calculations. In the proposed mechanism, the activation barrier of the rate-determining step is almost four times lower in the presence of N2O than without it. The supported NU-1000 framework plays also important role since it facilitates electron transfers and stabilizes all species along the reaction coordinate. When considering the catalytic activity of tetravalent metal centers (Zr, Hf and Ti) substituted into NU-1000 it is found that their activity decreases in the order Hf ≥ Zr > Ti, based on activation energies and turnover frequencies (TOF). Concerning MOF linkers, we show that the catalytic activity is not further improved by functionalizing NU-1000 with either electron-donating or electron-withdrawing organic groups.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM