HPMCAS
KinetiSol
amorphous solid dispersion
in vitro−in vivo correlation
poorly water-soluble drug
spray drying
Journal
Molecular pharmaceutics
ISSN: 1543-8392
Titre abrégé: Mol Pharm
Pays: United States
ID NLM: 101197791
Informations de publication
Date de publication:
03 08 2020
03 08 2020
Historique:
pubmed:
11
6
2020
medline:
29
6
2021
entrez:
11
6
2020
Statut:
ppublish
Résumé
Oral delivery of poorly water-soluble, weakly basic drugs may be problematic based on the drugs' intrinsic properties. Many drugs in this subset have overcome barriers to delivery following successful formulation as amorphous solid dispersions (ASDs). To process drugs as ASDs, multiple commercially relevant technologies have been developed and become well understood. However, ASD-producing technologies like spray drying and KinetiSol produce ASDs with vastly differing particle characteristics. Ultimately, the objective of this study was to assess whether processing an ASD of identical composition utilizing two different ASD-producing technologies (KinetiSol and spray drying) may impact the oral bioavailability of a weakly basic drug. For this study, we selected a weakly basic drug (Boehringer Ingelheim research compound 639667, BI 667) and processed it with an anionic polymer (hypromellose acetate succinate MMP grade (HPMCAS-MMP)) to evaluate whether the processing technology could modulate drug release in acidic and neutral media. Multiple characterization techniques (specific surface area (SSA), particle size distribution (PSD), scanning electron microscopy (SEM)) were utilized to evaluate the surface characteristics and differences in particles produced by KinetiSol and spray drying. Molecular interactions and drug-polymer miscibility of the processed particles were assessed using Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance, respectively.
Identifiants
pubmed: 32520562
doi: 10.1021/acs.molpharmaceut.0c00108
doi:
Substances chimiques
Drug Carriers
0
Pharmaceutical Preparations
0
Polymers
0
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM