Preserving the Integrity of Liposomes Prepared by Ethanol Injection upon Freeze-Drying: Insights from Combined Molecular Dynamics Simulations and Experimental Data.
cake appearance
cryoprotectant
freeze-drying
freezing rate
liposomes
lyoprotectant
solvent
sublimation
time and temperature
Journal
Pharmaceutics
ISSN: 1999-4923
Titre abrégé: Pharmaceutics
Pays: Switzerland
ID NLM: 101534003
Informations de publication
Date de publication:
09 Jun 2020
09 Jun 2020
Historique:
received:
02
05
2020
revised:
04
06
2020
accepted:
05
06
2020
entrez:
13
6
2020
pubmed:
13
6
2020
medline:
13
6
2020
Statut:
epublish
Résumé
The freeze-drying of complex formulations, such as liposomes, is challenging, particularly if dispersions contain residual organic solvents. This work aimed to investigate the effects of possible protectants, namely sucrose, trehalose and/or poly(vinyl pyrrolidone) (PVP), on the main features of the dried product using a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-based liposomal dispersion prepared by ethanol injection and containing ethanol up to 6%, as a model. The interactions among vesicles and protectants were preliminary screened by Molecular Dynamics (MD) simulations, which have been proved useful in rationalizing the selection of protectant(s). The freeze-drying protocol was based on calorimetric results. Overall data suggested a stronger cryo-protectant effect of trehalose, compared with sucrose, due to stronger interactions with the DPPC bilayer and the formation of highly ordered clusters around the lipids. The effect further improved in the presence of PVP. Differently from the other tested protectants, the selected trehalose/PVP combination allows to preserve liposome size, even in the presence of 6% ethanol, as demonstrated by Nanoparticle Tracking Analysis (NTA). Nevertheless, it should be also underlined that cakes blew out at an ethanol concentration higher than 1% v/v, probably due to the poor cohesion within the cake and solvent vapour pressure upon sublimation.
Identifiants
pubmed: 32526935
pii: pharmaceutics12060530
doi: 10.3390/pharmaceutics12060530
pmc: PMC7356173
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Mol Pharm. 2017 Jun 5;14(6):1998-2009
pubmed: 28409629
J Comput Chem. 2010 Mar;31(4):671-90
pubmed: 19575467
Pharmaceutics. 2018 Aug 28;10(3):
pubmed: 30154315
J Pharm Sci. 2017 Jul;106(7):1706-1721
pubmed: 28341598
Biochim Biophys Acta. 2006 Jan;1758(1):65-73
pubmed: 16473323
J Comput Chem. 2005 Dec;26(16):1781-802
pubmed: 16222654
Int J Pharm. 2016 Feb 29;499(1-2):101-109
pubmed: 26721724
Int J Pharm. 2017 May 30;524(1-2):134-140
pubmed: 28363858
J Pharm Sci. 2010 May;99(5):2256-78
pubmed: 20039389
J Mol Model. 2007 Dec;13(12):1173-213
pubmed: 17828561
J Phys Chem B. 2017 Sep 21;121(37):8652-8660
pubmed: 28826220
Eur J Pharm Sci. 2017 Aug 30;106:328-335
pubmed: 28627472
J Mol Graph Model. 2002 Aug;21(1):47-9
pubmed: 12413030
Pharm Res. 2018 Apr 26;35(7):131
pubmed: 29700627
J Pharm Sci. 2001 Jul;90(7):860-71
pubmed: 11458335
Adv Drug Deliv Rev. 2006 Dec 30;58(15):1688-713
pubmed: 17118485
J Pharm Sci. 2001 Jul;90(7):872-87
pubmed: 11458336
Chem Phys Lett. 2010 Feb 5;486(1-3):70-73
pubmed: 21031143
Adv Drug Deliv Rev. 2019 Nov - Dec;151-152:56-71
pubmed: 30898571
J Phys Chem B. 1998 Apr 30;102(18):3586-616
pubmed: 24889800
J Pharm Sci. 2018 Aug;107(8):2179-2191
pubmed: 29698727
J Pharm Sci. 2018 Aug;107(8):2005-2012
pubmed: 29649470
Phys Chem Chem Phys. 2018 Mar 28;20(12):8267-8277
pubmed: 29528066
J Colloid Interface Sci. 1999 Sep 1;217(1):160-165
pubmed: 10441424
J Chem Phys. 2005 May 22;122(20):204511
pubmed: 15945756
Biophys J. 2013 Mar 5;104(5):1049-55
pubmed: 23473487
Pharm Res. 2004 Feb;21(2):191-200
pubmed: 15032301
J Pharm Sci. 2020 Jun;109(6):1896-1904
pubmed: 32112825
J Pharm Sci. 2016 Jan;105(1):40-9
pubmed: 26580140
J Liposome Res. 2002;12(3):271-83
pubmed: 12604031
Eur J Pharm Sci. 2002 Mar;15(2):115-33
pubmed: 11849908
Biomacromolecules. 2001 Winter;2(4):1161-8
pubmed: 11777388