Contribution of uremic dysbiosis to insulin resistance and sarcopenia.
chronic kidney disease
dysbiosis
gut-derived uremic solute
insulin resistance
sarcopenia
Journal
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
ISSN: 1460-2385
Titre abrégé: Nephrol Dial Transplant
Pays: England
ID NLM: 8706402
Informations de publication
Date de publication:
01 09 2020
01 09 2020
Historique:
received:
11
09
2019
accepted:
14
03
2020
pubmed:
15
6
2020
medline:
4
2
2021
entrez:
15
6
2020
Statut:
ppublish
Résumé
Chronic kidney disease (CKD) leads to insulin resistance (IR) and sarcopenia, which are associated with a high mortality risk in CKD patients; however, their pathophysiologies remain unclear. Recently, alterations in gut microbiota have been reported to be associated with CKD. We aimed to determine whether uremic dysbiosis contributes to CKD-associated IR and sarcopenia. CKD was induced in specific pathogen-free mice via an adenine-containing diet; control animals were fed a normal diet. Fecal microbiota transplantation (FMT) was performed by oral gavage in healthy germ-free mice using cecal bacterial samples obtained from either control mice (control-FMT) or CKD mice (CKD-FMT). Vehicle mice were gavaged with sterile phosphate-buffered saline. Two weeks after inoculation, mice phenotypes, including IR and sarcopenia, were evaluated. IR and sarcopenia were evident in CKD mice compared with control mice. These features were reproduced in CKD-FMT mice compared with control-FMT and vehicle mice with attenuated insulin-induced signal transduction and mitochondrial dysfunction in skeletal muscles. Intestinal tight junction protein expression and adipocyte sizes were lower in CKD-FMT mice than in control-FMT mice. Furthermore, CKD-FMT mice showed systemic microinflammation, increased concentrations of serum uremic solutes, fecal bacterial fermentation products and elevated lipid content in skeletal muscle. The differences in gut microbiota between CKD and control mice were mostly consistent between CKD-FMT and control-FMT mice. Uremic dysbiosis induces IR and sarcopenia, leaky gut and lipodystrophy.
Sections du résumé
BACKGROUND
Chronic kidney disease (CKD) leads to insulin resistance (IR) and sarcopenia, which are associated with a high mortality risk in CKD patients; however, their pathophysiologies remain unclear. Recently, alterations in gut microbiota have been reported to be associated with CKD. We aimed to determine whether uremic dysbiosis contributes to CKD-associated IR and sarcopenia.
METHODS
CKD was induced in specific pathogen-free mice via an adenine-containing diet; control animals were fed a normal diet. Fecal microbiota transplantation (FMT) was performed by oral gavage in healthy germ-free mice using cecal bacterial samples obtained from either control mice (control-FMT) or CKD mice (CKD-FMT). Vehicle mice were gavaged with sterile phosphate-buffered saline. Two weeks after inoculation, mice phenotypes, including IR and sarcopenia, were evaluated.
RESULTS
IR and sarcopenia were evident in CKD mice compared with control mice. These features were reproduced in CKD-FMT mice compared with control-FMT and vehicle mice with attenuated insulin-induced signal transduction and mitochondrial dysfunction in skeletal muscles. Intestinal tight junction protein expression and adipocyte sizes were lower in CKD-FMT mice than in control-FMT mice. Furthermore, CKD-FMT mice showed systemic microinflammation, increased concentrations of serum uremic solutes, fecal bacterial fermentation products and elevated lipid content in skeletal muscle. The differences in gut microbiota between CKD and control mice were mostly consistent between CKD-FMT and control-FMT mice.
CONCLUSIONS
Uremic dysbiosis induces IR and sarcopenia, leaky gut and lipodystrophy.
Identifiants
pubmed: 32535631
pii: 5857305
doi: 10.1093/ndt/gfaa076
doi:
Substances chimiques
Lipids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1501-1517Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.