Alveolar mimics with periodic strain and its effect on the cell layer formation.
alveolar air-tissue interface
alveolus mimic
gelatin nanofibers
lung-on-a-chip
physiological strain
Journal
Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
18
02
2020
revised:
09
04
2020
accepted:
13
06
2020
pubmed:
17
6
2020
medline:
14
9
2021
entrez:
17
6
2020
Statut:
ppublish
Résumé
We report on the development of a new model of alveolar air-tissue interface on a chip. The model consists of an array of suspended hexagonal monolayers of gelatin nanofibers supported by microframes and a microfluidic device for the patch integration. The suspended monolayers are deformed to a central displacement of 40-80 µm at the air-liquid interface by application of air pressure in the range of 200-1,000 Pa. With respect to the diameter of the monolayers, that is, 500 µm, this displacement corresponds to a linear strain of 2-10% in agreement with the physiological strain range in the lung alveoli. The culture of A549 cells on the monolayers for an incubation time of 1-3 days showed viability in the model. We exerted a periodic strain of 5% at a frequency of 0.2 Hz for 1 hr to the cells. We found that the cells were strongly coupled to the nanofibers, but the strain reduced the coupling and induced remodeling of the actin cytoskeleton, which led to a better tissue formation. Our model can serve as a versatile tool in lung investigations such as in inhalation toxicology and therapy.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2827-2841Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Bilek, A. M., Dee, K. C., & Gaver, D. P., 3rd. (2003). Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. Journal of Applied Physiology, 94(2), 770-783. https://doi.org/10.1152/japplphysiol.00764.2002
Boxshall, K., Wu, M.-H., Cui, Z., Cui, Z., Watts, J. F., & Baker, M. A. (2006). Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor. Surface and Interface Analysis, 38(4), 198-201. https://doi.org/10.1002/sia.2274
Brückner, B. R., & Janshoff, A. (2015). Elastic properties of epithelial cells probed by atomic force microscopy. Biochimica et Biophysica Acta, 1853(11), 3075-3082. https://doi.org/10.1016/j.bbamcr.2015.07.010
Campillo, N., Jorba, I., Schaedel, L., Casals, B., Gozal, D., Farre, R., … Navajas, D. (2016). A novel chip for cyclic stretch and intermittent hypoxia cell exposures mimicking obstructive sleep apnea. Frontiers in Physiology, 7, 319. https://doi.org/10.3389/fphys.2016.00319
Chess, P. R., Toia, L., & Finkelstein, J. N. (2000). Mechanical strain-induced proliferation and signaling in pulmonary epithelial H441 cells. American Journal of Physiology, 279(1), L43-L51. https://doi.org/10.1152/ajplung.2000.279.1.L43
Dahlin, R. L., Kasper, F. K., & Mikos, A. G. (2011). Polymeric nanofibers in tissue engineering. Tissue Engineering, 17(5), 349-364. https://doi.org/10.1089/ten.TEB.2011.0238
Davidovich, N., DiPaolo, B. C., Lawrence, G. G., Chhour, P., Yehya, N., & Margulies, S. S. (2013). Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. American Journal of Respiratory Cell and Molecular Biology, 49(1), 156-164. https://doi.org/10.1165/rcmb.2012-0252OC
Desai, T. J., Brownfield, D. G., & Krasnow, M. A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 507, 190-194. https://doi.org/10.1038/nature12930.
Douville, N. J., Zamankhan, P., Tung, Y. C., Li, R., Vaughan, B. L., Tai, C. F., … Takayama, S. (2011). Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab on a Chip, 11(4), 609-619. https://doi.org/10.1039/c0lc00251h
Dunsmore, S. E., & Rannels, D. E. (1996). Extracellular matrix biology in the lung. American Journal of Physiology, 270(1), L3-L27. https://doi.org/10.1152/ajplung.1996.270.1.L3
Fehrenbach, H. (2001). Alveolar epithelial type II cell: Defender of the alveolus revisited. Respiratory Research, 2(1), 33-46. https://doi.org/10.1186/rr36.
Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(Pt 24), 4195-4200. https://doi.org/10.1242/jcs.023820
Fredberg, J. J., & Kamm, R. D. (2006). Stress transmission in the lung: Pathways from organ to molecule. Annual Review of Physiology, 68, 507-541. https://doi.org/10.1146/annurev.physiol.68.072304.114110
Fung, Y. C. (1988). A model of the lung structure and its validation. Journal of Applied Physiology, 64(5), 2132-2141. https://doi.org/10.1152/jappl.1988.64.5.2132
Guenat, O. T., & Berthiaume, F. (2018). Incorporating mechanical strain in organs-on-a-chip: Lung and skin. Biomicrofluidics, 12(4), 042207. https://doi.org/10.1063/1.5024895
Hammerschmidt, S., Kuhn, H., Grasenack, T., Gessner, C., & Wirtz, H. (2004). Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type II cells. American Journal of Respiratory Cell and Molecular Biology, 30(3), 396-402. https://doi.org/10.1165/rcmb.2003-0136OC
Harris, A. R., Peter, L., Bellis, J., Baum, B., Kabla, A. J., & Charras, G. T. (2012). Characterizing the mechanics of cultured cell monolayers. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16449-16454. https://doi.org/10.1073/pnas.1213301109
He, X.-T., Chen, Q., Sun, J.-Y., & Zheng, Z.-L. (2012). Large-deflection axisymmetric deformation of circular clamped plates with different moduli in tension and compression. International Journal of Mechanical Sciences, 62, 103-110. https://doi.org/10.1016/j.ijmecsci.2012.06.003
Hermanns, M. I., Fuchs, S., Bock, M., Wenzel, K., Mayer, E., Kehe, K., … Kirkpatrick, C. J. (2009). Primary human coculture model of alveolo-capillary unit to study mechanisms of injury to peripheral lung. Cell and Tissue Research, 336(1), 91-105. https://doi.org/10.1007/s00441-008-0750-1
Higuita-Castro, N., Mihai, C., Hansford, D. J., & Ghadiali, S. N. (2014). Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows. Journal of Applied Physiology, 117(11), 1231-1242. https://doi.org/10.1152/japplphysiol.00752.2013
Higuita-Castro, N., Nelson, M. T., Shukla, V., Agudelo-Garcia, P. A., Zhang, W., Duarte-Sanmiguel, S. M., … Ghadiali, S. N. (2017). Using a novel microfabricated model of the alveolar-capillary barrier to investigate the effect of matrix structure on atelectrauma. Scientific Reports, 7(1), 11623. https://doi.org/10.1038/s41598-017-12044-9
Huh, D., Fujioka, H., Tung, Y. C., Futai, N., Paine, R., 3rd, Grotberg, J. B., & Takayama, S. (2007). Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 18886-18891. https://doi.org/10.1073/pnas.0610868104
Huh, D., Leslie, D. C., Matthews, B. D., Fraser, J. P., Jurek, S., Hamilton, G. A., … Ingber, D. E. (2012). A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Science Translational Medicine, 4(159), 159ra147. https://doi.org/10.1126/scitranslmed.3004249
Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., & Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip. Science, 328(5986), 1662-1668. https://doi.org/10.1126/science.1188302
Israelachvili, J. N. (2011). Intermolecular and surface forces (3rd ed.). Boston: Academic Press.
Jacob, A. M., & Gaver, D. P., 3rd. (2012). Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4. Journal of Applied Physiology, 113(9), 1377-1387. https://doi.org/10.1152/japplphysiol.01432.2011
Jain, A., Barrile, R., van der Meer, A. D., Mammoto, A., Mammoto, T., De Ceunynck, K., … Ingber, D. E. (2018). Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clinical Pharmacology and Therapeutics, 103(2), 332-340. https://doi.org/10.1002/cpt.742
Kamotani, Y., Bersano-Begey, T., Kato, N., Tung, Y. C., Huh, D., Song, J. W., & Takayama, S. (2008). Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials, 29(17), 2646-2655. https://doi.org/10.1016/j.biomaterials.2008.02.019
Kim, S. E., Heo, D. N., Lee, J. B., Kim, J. R., Park, S. H., Jeon, S. H., & Kwon, I. K. (2009). Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomedical Materials, 4(4), 044106. https://doi.org/10.1088/1748-6041/4/4/044106
Lieber, M., Smith, B., Szakal, A., Nelson-Rees, W., & Todaro, G. (1976). A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. International Journal of Cancer, 17(1), 62-70. https://doi.org/10.1002/ijc.2910170110
Liu, L., Yoshioka, M., Nakajima, M., Ogasawara, A., Liu, J., Hasegawa, K., … Chen, Y. (2014). Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials, 35(24), 6259-6267. https://doi.org/10.1016/j.biomaterials.2014.04.024
Maina, J. N., & West, J. B. (2005). Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiological Reviews, 85(3), 811-844. https://doi.org/10.1152/physrev.00022.2004
Nalayanda, D. D., Puleo, C., Fulton, W. B., Sharpe, L. M., Wang, T. H., & Abdullah, F. (2009). An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomedical Microdevices, 11(5), 1081-1089. https://doi.org/10.1007/s10544-009-9325-5
Park, S. E., Georgescu, A., & Huh, D. (2019). Organoids-on-a-chip. Science, 364(6444), 960-965. https://doi.org/10.1126/science.aaw7894
Perlman, C. E., & Bhattacharya, J. (2007). Alveolar expansion imaged by optical sectioning microscopy. Journal of Applied Physiology, 103(3), 1037-1044. https://doi.org/10.1152/japplphysiol.00160.2007
Polio, S. R., Kundu, A. N., Dougan, C. E., Birch, N. P., Aurian-Blajeni, D. E., Schiffman, J. D., … Peyton, S. R. (2018). Cross-platform mechanical characterization of lung tissue. PLOS One, 13(10), e0204765. https://doi.org/10.1371/journal.pone.0204765
Qian, X., Zhang, W., Peng, C., Liu, X., Yu, Q., Ni, K., & Wang, X. (2016). Characterizing the deformation of the polydimethylsiloxane (PDMS) membrane for microfluidic system through image processing. Micromachines, 7(5), 92. https://doi.org/10.3390/mi7050092
Roan, E., & Waters, C. M. (2011). What do we know about mechanical strain in lung alveoli? American Journal of Physiology, 301(5), L625-L635. https://doi.org/10.1152/ajplung.00105.2011
Roan, E., Wilhelm, K. R., & Waters, C. M. (2015). Kymographic imaging of the elastic modulus of epithelial cells during the onset of migration. Biophysical Journal, 109(10), 2051-2057. https://doi.org/10.1016/j.bpj.2015.10.005
Robert, H. N. (2000). Lung surfactants: Basic science and clinical applications. Lung Biology in Health and Disease, (Vol. 149). New York: Marcel Dekker Inc.
Sanchez-Esteban, J., Cicchiello, L. A., Wang, Y., Tsai, S. W., Williams, L. K., Torday, J. S., & Rubin, L. P. (2001). Mechanical stretch promotes alveolar epithelial type II cell differentiation. Journal of Applied Physiology, 91(2), 589-595. https://doi.org/10.1152/jappl.2001.91.2.589
Scott, J. E., Yang, S. Y., Stanik, E., & Anderson, J. E. (1993). Influence of strain on [3H]thymidine incorporation, surfactant-related phospholipid synthesis, and cAMP levels in fetal type II alveolar cells. American Journal of Respiratory Cell and Molecular Biology, 8(3), 258-265. https://doi.org/10.1165/ajrcmb/8.3.258
Stucki, A. O., Stucki, J. D., Hall, S. R. R., Felder, M., Mermoud, Y., Schmid, R. A., … Guenat, O. T. (2015). A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab on a Chip, 15(5), 1302-1310. https://doi.org/10.1039/C4LC01252F
Stucki, J. D., Hobi, N., Galimov, A., Stucki, A. O., Schneider-Daum, N., Lehr, C.-M., … Guenat, O. T. (2018). Medium throughput breathing human primary cell alveolus-on-chip model. Scientific Reports, 8(1), 14359. https://doi.org/10.1038/s41598-018-32523-x
Tang, Y., Liu, L., Li, J., Yu, L., Severino, F. P. U., Wang, L., … Chen, Y. (2016). Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers. Journal of Materials Chemistry B, 4(19), 3305-3312. https://doi.org/10.1039/C6TB00351F
Tang, Y., Liu, L., Li, J., Yu, L., Wang, L., Shi, J., & Chen, Y. (2016). Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers. Nanoscale, 8(30), 14530-14540. https://doi.org/10.1039/C6NR04545F
Tang, Y., Ulloa Severino, F. P., Iseppon, F., Torre, V., & Chen, Y. (2017). Patch method for culture of primary hippocampal neurons. Microelectronic Engineering, 175, 61-66. https://doi.org/10.1016/j.mee.2017.01.012
Tenenbaum-Katan, J., Artzy-Schnirman, A., Fishler, R., Korin, N., & Sznitman, J. (2018). Biomimetics of the pulmonary environment in vitro: A microfluidics perspective. Biomicrofluidics, 12(4), 042209. https://doi.org/10.1063/1.5023034
Thangawng, A. L., Ruoff, R. S., Swartz, M. A., & Glucksberg, M. R. (2007). An ultra-thin PDMS membrane as a bio/micro-nano interface: Fabrication and characterization. Biomedical Microdevices, 9(4), 587-595. https://doi.org/10.1007/s10544-007-9070-6
Townsley, M. I. (2012). Structure and composition of pulmonary arteries, capillaries, and veins. Comprehensive Physiology, 2(1), 675-709. https://doi.org/10.1002/cphy.c100081
Trepat, X., Grabulosa, M., Puig, F., Maksym, G. N., Navajas, D., & Farre, R. (2004). Viscoelasticity of human alveolar epithelial cells subjected to stretch. American Journal of Physiology, 287(5), L1025-L1034. https://doi.org/10.1152/ajplung.00077.2004
Tschumperlin, D. J., & Margulies, S. S. (1998). Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. American Journal of Physiology, 275(6), L1173-L1183. https://doi.org/10.1152/ajplung.1998.275.6.L1173
Tschumperlin, D. J., Oswari, J., & Margulies, A. S. (2000). Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. American Journal of Respiratory and Critical Care Medicine, 162(2 Pt 1), 357-362. https://doi.org/10.1164/ajrccm.162.2.9807003
van Meer, B. J., de Vries, H., Firth, K. S. A., van Weerd, J., Tertoolen, L. G. J., Karperien, H. B. J., … Mummery, C. L. (2017). Small molecule absorption by PDMS in the context of drug response bioassays. Biochemical and Biophysical Research Communications, 482(2), 323-328. https://doi.org/10.1016/j.bbrc.2016.11.062
Vlahakis, N. E., Schroeder, M. A., Limper, A. H., & Hubmayr, R. D. (1999). Stretch induces cytokine release by alveolar epithelial cells in vitro. American Journal of Physiology, 277(1), L167-L173. https://doi.org/10.1152/ajplung.1999.277.1.L167
Wan, K.-T., Guo, S., & Dillard, D. A. (2003). A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films, 425(1), 150-162. https://doi.org/10.1016/S0040-6090(02)01103-3
Wan, K.-T., & Lim, S.-C. (1998). The bending to stretching transition of a pressurized blister test. International Journal of Fracture, 92(4), 43-47. https://doi.org/10.1023/A:1007612016147
Waters, C. M., Roan, E., & Navajas, D. (2012). Mechanobiology in lung epithelial cells: Measurements, perturbations, and responses. Comprehensive Physiology, 2(1), 1-29. https://doi.org/10.1002/cphy.c100090
Weibel, E. R. (2015). On the tricks alveolar epithelial cells play to make a good lung. American Journal of Respiratory and Critical Care Medicine, 191(5), 504-513. https://doi.org/10.1164/rccm.201409-1663OE
Wu, S.-C., Chang, W.-H., Dong, G.-C., Chen, K.-Y., Chen, Y.-S., & Yao, C.-H. (2011). Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. Journal of Bioactive and Compatible Polymers, 26(6), 565-577. https://doi.org/10.1177/0883911511423563
Zamprogno, P., Wüthrich, S., Achenbach, S., Stucki, J. D., Hobi, N., Schneider-Daum, N., … Guenat, O. T. (2019). Second-generation lung-on-a-chip array with a stretchable biological membrane. bioRxiv, 608919. https://doi.org/10.1101/608919
Zhang, S., Huang, Y., Yang, X., Mei, F., Ma, Q., Chen, G., … Deng, X. (2009). Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. Journal of Biomedical Materials Research Part A, 90A(3), 671-679. https://doi.org/10.1002/jbm.a.32136
Zhang, Y. (2016). Large deflection of clamped circular plate and accuracy of its approximate analytical solutions. Science China Physics, Mechanics & Astronomy, 59(2), 624602. https://doi.org/10.1007/s11433-015-5751-y
Zhou, Y., Horowitz, J. C., Naba, A., Ambalavanan, N., Atabai, K., Balestrini, J., … Thannickal, V. J. (2018). Extracellular matrix in lung development, homeostasis and disease. Matrix Biology, 73, 77-104. https://doi.org/10.1016/j.matbio.2018.03.005