Alveolar mimics with periodic strain and its effect on the cell layer formation.


Journal

Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021

Informations de publication

Date de publication:
09 2020
Historique:
received: 18 02 2020
revised: 09 04 2020
accepted: 13 06 2020
pubmed: 17 6 2020
medline: 14 9 2021
entrez: 17 6 2020
Statut: ppublish

Résumé

We report on the development of a new model of alveolar air-tissue interface on a chip. The model consists of an array of suspended hexagonal monolayers of gelatin nanofibers supported by microframes and a microfluidic device for the patch integration. The suspended monolayers are deformed to a central displacement of 40-80 µm at the air-liquid interface by application of air pressure in the range of 200-1,000 Pa. With respect to the diameter of the monolayers, that is, 500 µm, this displacement corresponds to a linear strain of 2-10% in agreement with the physiological strain range in the lung alveoli. The culture of A549 cells on the monolayers for an incubation time of 1-3 days showed viability in the model. We exerted a periodic strain of 5% at a frequency of 0.2 Hz for 1 hr to the cells. We found that the cells were strongly coupled to the nanofibers, but the strain reduced the coupling and induced remodeling of the actin cytoskeleton, which led to a better tissue formation. Our model can serve as a versatile tool in lung investigations such as in inhalation toxicology and therapy.

Identifiants

pubmed: 32542664
doi: 10.1002/bit.27458
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2827-2841

Informations de copyright

© 2020 Wiley Periodicals LLC.

Références

Bilek, A. M., Dee, K. C., & Gaver, D. P., 3rd. (2003). Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. Journal of Applied Physiology, 94(2), 770-783. https://doi.org/10.1152/japplphysiol.00764.2002
Boxshall, K., Wu, M.-H., Cui, Z., Cui, Z., Watts, J. F., & Baker, M. A. (2006). Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor. Surface and Interface Analysis, 38(4), 198-201. https://doi.org/10.1002/sia.2274
Brückner, B. R., & Janshoff, A. (2015). Elastic properties of epithelial cells probed by atomic force microscopy. Biochimica et Biophysica Acta, 1853(11), 3075-3082. https://doi.org/10.1016/j.bbamcr.2015.07.010
Campillo, N., Jorba, I., Schaedel, L., Casals, B., Gozal, D., Farre, R., … Navajas, D. (2016). A novel chip for cyclic stretch and intermittent hypoxia cell exposures mimicking obstructive sleep apnea. Frontiers in Physiology, 7, 319. https://doi.org/10.3389/fphys.2016.00319
Chess, P. R., Toia, L., & Finkelstein, J. N. (2000). Mechanical strain-induced proliferation and signaling in pulmonary epithelial H441 cells. American Journal of Physiology, 279(1), L43-L51. https://doi.org/10.1152/ajplung.2000.279.1.L43
Dahlin, R. L., Kasper, F. K., & Mikos, A. G. (2011). Polymeric nanofibers in tissue engineering. Tissue Engineering, 17(5), 349-364. https://doi.org/10.1089/ten.TEB.2011.0238
Davidovich, N., DiPaolo, B. C., Lawrence, G. G., Chhour, P., Yehya, N., & Margulies, S. S. (2013). Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. American Journal of Respiratory Cell and Molecular Biology, 49(1), 156-164. https://doi.org/10.1165/rcmb.2012-0252OC
Desai, T. J., Brownfield, D. G., & Krasnow, M. A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 507, 190-194. https://doi.org/10.1038/nature12930.
Douville, N. J., Zamankhan, P., Tung, Y. C., Li, R., Vaughan, B. L., Tai, C. F., … Takayama, S. (2011). Combination of fluid and solid mechanical stresses contribute to cell death and detachment in a microfluidic alveolar model. Lab on a Chip, 11(4), 609-619. https://doi.org/10.1039/c0lc00251h
Dunsmore, S. E., & Rannels, D. E. (1996). Extracellular matrix biology in the lung. American Journal of Physiology, 270(1), L3-L27. https://doi.org/10.1152/ajplung.1996.270.1.L3
Fehrenbach, H. (2001). Alveolar epithelial type II cell: Defender of the alveolus revisited. Respiratory Research, 2(1), 33-46. https://doi.org/10.1186/rr36.
Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(Pt 24), 4195-4200. https://doi.org/10.1242/jcs.023820
Fredberg, J. J., & Kamm, R. D. (2006). Stress transmission in the lung: Pathways from organ to molecule. Annual Review of Physiology, 68, 507-541. https://doi.org/10.1146/annurev.physiol.68.072304.114110
Fung, Y. C. (1988). A model of the lung structure and its validation. Journal of Applied Physiology, 64(5), 2132-2141. https://doi.org/10.1152/jappl.1988.64.5.2132
Guenat, O. T., & Berthiaume, F. (2018). Incorporating mechanical strain in organs-on-a-chip: Lung and skin. Biomicrofluidics, 12(4), 042207. https://doi.org/10.1063/1.5024895
Hammerschmidt, S., Kuhn, H., Grasenack, T., Gessner, C., & Wirtz, H. (2004). Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type II cells. American Journal of Respiratory Cell and Molecular Biology, 30(3), 396-402. https://doi.org/10.1165/rcmb.2003-0136OC
Harris, A. R., Peter, L., Bellis, J., Baum, B., Kabla, A. J., & Charras, G. T. (2012). Characterizing the mechanics of cultured cell monolayers. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16449-16454. https://doi.org/10.1073/pnas.1213301109
He, X.-T., Chen, Q., Sun, J.-Y., & Zheng, Z.-L. (2012). Large-deflection axisymmetric deformation of circular clamped plates with different moduli in tension and compression. International Journal of Mechanical Sciences, 62, 103-110. https://doi.org/10.1016/j.ijmecsci.2012.06.003
Hermanns, M. I., Fuchs, S., Bock, M., Wenzel, K., Mayer, E., Kehe, K., … Kirkpatrick, C. J. (2009). Primary human coculture model of alveolo-capillary unit to study mechanisms of injury to peripheral lung. Cell and Tissue Research, 336(1), 91-105. https://doi.org/10.1007/s00441-008-0750-1
Higuita-Castro, N., Mihai, C., Hansford, D. J., & Ghadiali, S. N. (2014). Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows. Journal of Applied Physiology, 117(11), 1231-1242. https://doi.org/10.1152/japplphysiol.00752.2013
Higuita-Castro, N., Nelson, M. T., Shukla, V., Agudelo-Garcia, P. A., Zhang, W., Duarte-Sanmiguel, S. M., … Ghadiali, S. N. (2017). Using a novel microfabricated model of the alveolar-capillary barrier to investigate the effect of matrix structure on atelectrauma. Scientific Reports, 7(1), 11623. https://doi.org/10.1038/s41598-017-12044-9
Huh, D., Fujioka, H., Tung, Y. C., Futai, N., Paine, R., 3rd, Grotberg, J. B., & Takayama, S. (2007). Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 18886-18891. https://doi.org/10.1073/pnas.0610868104
Huh, D., Leslie, D. C., Matthews, B. D., Fraser, J. P., Jurek, S., Hamilton, G. A., … Ingber, D. E. (2012). A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Science Translational Medicine, 4(159), 159ra147. https://doi.org/10.1126/scitranslmed.3004249
Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., & Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip. Science, 328(5986), 1662-1668. https://doi.org/10.1126/science.1188302
Israelachvili, J. N. (2011). Intermolecular and surface forces (3rd ed.). Boston: Academic Press.
Jacob, A. M., & Gaver, D. P., 3rd. (2012). Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4. Journal of Applied Physiology, 113(9), 1377-1387. https://doi.org/10.1152/japplphysiol.01432.2011
Jain, A., Barrile, R., van der Meer, A. D., Mammoto, A., Mammoto, T., De Ceunynck, K., … Ingber, D. E. (2018). Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clinical Pharmacology and Therapeutics, 103(2), 332-340. https://doi.org/10.1002/cpt.742
Kamotani, Y., Bersano-Begey, T., Kato, N., Tung, Y. C., Huh, D., Song, J. W., & Takayama, S. (2008). Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials, 29(17), 2646-2655. https://doi.org/10.1016/j.biomaterials.2008.02.019
Kim, S. E., Heo, D. N., Lee, J. B., Kim, J. R., Park, S. H., Jeon, S. H., & Kwon, I. K. (2009). Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomedical Materials, 4(4), 044106. https://doi.org/10.1088/1748-6041/4/4/044106
Lieber, M., Smith, B., Szakal, A., Nelson-Rees, W., & Todaro, G. (1976). A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. International Journal of Cancer, 17(1), 62-70. https://doi.org/10.1002/ijc.2910170110
Liu, L., Yoshioka, M., Nakajima, M., Ogasawara, A., Liu, J., Hasegawa, K., … Chen, Y. (2014). Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials, 35(24), 6259-6267. https://doi.org/10.1016/j.biomaterials.2014.04.024
Maina, J. N., & West, J. B. (2005). Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiological Reviews, 85(3), 811-844. https://doi.org/10.1152/physrev.00022.2004
Nalayanda, D. D., Puleo, C., Fulton, W. B., Sharpe, L. M., Wang, T. H., & Abdullah, F. (2009). An open-access microfluidic model for lung-specific functional studies at an air-liquid interface. Biomedical Microdevices, 11(5), 1081-1089. https://doi.org/10.1007/s10544-009-9325-5
Park, S. E., Georgescu, A., & Huh, D. (2019). Organoids-on-a-chip. Science, 364(6444), 960-965. https://doi.org/10.1126/science.aaw7894
Perlman, C. E., & Bhattacharya, J. (2007). Alveolar expansion imaged by optical sectioning microscopy. Journal of Applied Physiology, 103(3), 1037-1044. https://doi.org/10.1152/japplphysiol.00160.2007
Polio, S. R., Kundu, A. N., Dougan, C. E., Birch, N. P., Aurian-Blajeni, D. E., Schiffman, J. D., … Peyton, S. R. (2018). Cross-platform mechanical characterization of lung tissue. PLOS One, 13(10), e0204765. https://doi.org/10.1371/journal.pone.0204765
Qian, X., Zhang, W., Peng, C., Liu, X., Yu, Q., Ni, K., & Wang, X. (2016). Characterizing the deformation of the polydimethylsiloxane (PDMS) membrane for microfluidic system through image processing. Micromachines, 7(5), 92. https://doi.org/10.3390/mi7050092
Roan, E., & Waters, C. M. (2011). What do we know about mechanical strain in lung alveoli? American Journal of Physiology, 301(5), L625-L635. https://doi.org/10.1152/ajplung.00105.2011
Roan, E., Wilhelm, K. R., & Waters, C. M. (2015). Kymographic imaging of the elastic modulus of epithelial cells during the onset of migration. Biophysical Journal, 109(10), 2051-2057. https://doi.org/10.1016/j.bpj.2015.10.005
Robert, H. N. (2000). Lung surfactants: Basic science and clinical applications. Lung Biology in Health and Disease, (Vol. 149). New York: Marcel Dekker Inc.
Sanchez-Esteban, J., Cicchiello, L. A., Wang, Y., Tsai, S. W., Williams, L. K., Torday, J. S., & Rubin, L. P. (2001). Mechanical stretch promotes alveolar epithelial type II cell differentiation. Journal of Applied Physiology, 91(2), 589-595. https://doi.org/10.1152/jappl.2001.91.2.589
Scott, J. E., Yang, S. Y., Stanik, E., & Anderson, J. E. (1993). Influence of strain on [3H]thymidine incorporation, surfactant-related phospholipid synthesis, and cAMP levels in fetal type II alveolar cells. American Journal of Respiratory Cell and Molecular Biology, 8(3), 258-265. https://doi.org/10.1165/ajrcmb/8.3.258
Stucki, A. O., Stucki, J. D., Hall, S. R. R., Felder, M., Mermoud, Y., Schmid, R. A., … Guenat, O. T. (2015). A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab on a Chip, 15(5), 1302-1310. https://doi.org/10.1039/C4LC01252F
Stucki, J. D., Hobi, N., Galimov, A., Stucki, A. O., Schneider-Daum, N., Lehr, C.-M., … Guenat, O. T. (2018). Medium throughput breathing human primary cell alveolus-on-chip model. Scientific Reports, 8(1), 14359. https://doi.org/10.1038/s41598-018-32523-x
Tang, Y., Liu, L., Li, J., Yu, L., Severino, F. P. U., Wang, L., … Chen, Y. (2016). Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers. Journal of Materials Chemistry B, 4(19), 3305-3312. https://doi.org/10.1039/C6TB00351F
Tang, Y., Liu, L., Li, J., Yu, L., Wang, L., Shi, J., & Chen, Y. (2016). Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers. Nanoscale, 8(30), 14530-14540. https://doi.org/10.1039/C6NR04545F
Tang, Y., Ulloa Severino, F. P., Iseppon, F., Torre, V., & Chen, Y. (2017). Patch method for culture of primary hippocampal neurons. Microelectronic Engineering, 175, 61-66. https://doi.org/10.1016/j.mee.2017.01.012
Tenenbaum-Katan, J., Artzy-Schnirman, A., Fishler, R., Korin, N., & Sznitman, J. (2018). Biomimetics of the pulmonary environment in vitro: A microfluidics perspective. Biomicrofluidics, 12(4), 042209. https://doi.org/10.1063/1.5023034
Thangawng, A. L., Ruoff, R. S., Swartz, M. A., & Glucksberg, M. R. (2007). An ultra-thin PDMS membrane as a bio/micro-nano interface: Fabrication and characterization. Biomedical Microdevices, 9(4), 587-595. https://doi.org/10.1007/s10544-007-9070-6
Townsley, M. I. (2012). Structure and composition of pulmonary arteries, capillaries, and veins. Comprehensive Physiology, 2(1), 675-709. https://doi.org/10.1002/cphy.c100081
Trepat, X., Grabulosa, M., Puig, F., Maksym, G. N., Navajas, D., & Farre, R. (2004). Viscoelasticity of human alveolar epithelial cells subjected to stretch. American Journal of Physiology, 287(5), L1025-L1034. https://doi.org/10.1152/ajplung.00077.2004
Tschumperlin, D. J., & Margulies, S. S. (1998). Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. American Journal of Physiology, 275(6), L1173-L1183. https://doi.org/10.1152/ajplung.1998.275.6.L1173
Tschumperlin, D. J., Oswari, J., & Margulies, A. S. (2000). Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. American Journal of Respiratory and Critical Care Medicine, 162(2 Pt 1), 357-362. https://doi.org/10.1164/ajrccm.162.2.9807003
van Meer, B. J., de Vries, H., Firth, K. S. A., van Weerd, J., Tertoolen, L. G. J., Karperien, H. B. J., … Mummery, C. L. (2017). Small molecule absorption by PDMS in the context of drug response bioassays. Biochemical and Biophysical Research Communications, 482(2), 323-328. https://doi.org/10.1016/j.bbrc.2016.11.062
Vlahakis, N. E., Schroeder, M. A., Limper, A. H., & Hubmayr, R. D. (1999). Stretch induces cytokine release by alveolar epithelial cells in vitro. American Journal of Physiology, 277(1), L167-L173. https://doi.org/10.1152/ajplung.1999.277.1.L167
Wan, K.-T., Guo, S., & Dillard, D. A. (2003). A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films, 425(1), 150-162. https://doi.org/10.1016/S0040-6090(02)01103-3
Wan, K.-T., & Lim, S.-C. (1998). The bending to stretching transition of a pressurized blister test. International Journal of Fracture, 92(4), 43-47. https://doi.org/10.1023/A:1007612016147
Waters, C. M., Roan, E., & Navajas, D. (2012). Mechanobiology in lung epithelial cells: Measurements, perturbations, and responses. Comprehensive Physiology, 2(1), 1-29. https://doi.org/10.1002/cphy.c100090
Weibel, E. R. (2015). On the tricks alveolar epithelial cells play to make a good lung. American Journal of Respiratory and Critical Care Medicine, 191(5), 504-513. https://doi.org/10.1164/rccm.201409-1663OE
Wu, S.-C., Chang, W.-H., Dong, G.-C., Chen, K.-Y., Chen, Y.-S., & Yao, C.-H. (2011). Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. Journal of Bioactive and Compatible Polymers, 26(6), 565-577. https://doi.org/10.1177/0883911511423563
Zamprogno, P., Wüthrich, S., Achenbach, S., Stucki, J. D., Hobi, N., Schneider-Daum, N., … Guenat, O. T. (2019). Second-generation lung-on-a-chip array with a stretchable biological membrane. bioRxiv, 608919. https://doi.org/10.1101/608919
Zhang, S., Huang, Y., Yang, X., Mei, F., Ma, Q., Chen, G., … Deng, X. (2009). Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. Journal of Biomedical Materials Research Part A, 90A(3), 671-679. https://doi.org/10.1002/jbm.a.32136
Zhang, Y. (2016). Large deflection of clamped circular plate and accuracy of its approximate analytical solutions. Science China Physics, Mechanics & Astronomy, 59(2), 624602. https://doi.org/10.1007/s11433-015-5751-y
Zhou, Y., Horowitz, J. C., Naba, A., Ambalavanan, N., Atabai, K., Balestrini, J., … Thannickal, V. J. (2018). Extracellular matrix in lung development, homeostasis and disease. Matrix Biology, 73, 77-104. https://doi.org/10.1016/j.matbio.2018.03.005

Auteurs

Milad Radiom (M)

Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot Paris-VII, Paris, France.

Yong He (Y)

Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, Pasteur, École Normale Supérieure-PSL Research University, Paris, France.

Juan Peng-Wang (J)

Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, Pasteur, École Normale Supérieure-PSL Research University, Paris, France.

Armelle Baeza-Squiban (A)

Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot Paris-VII, Paris, France.

Jean-François Berret (JF)

Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot Paris-VII, Paris, France.

Yong Chen (Y)

Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, Pasteur, École Normale Supérieure-PSL Research University, Paris, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH