How Water in Aliphatic Solvents Directs the Interference of Chemical Reactivity in a Supramolecular System.
Journal
Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056
Informations de publication
Date de publication:
15 07 2020
15 07 2020
Historique:
pubmed:
17
6
2020
medline:
17
6
2020
entrez:
17
6
2020
Statut:
ppublish
Résumé
Water is typically considered to be insoluble in alkanes. Recently, however, monomerically dissolved water in alkanes has been shown to dramatically impact the structure of hydrogen-bonded supramolecular polymers. Here, we report that water in methylcyclohexane (MCH) also determines the outcome of combining a Michael reaction with a porphyrin-based supramolecular system. In dry conditions, the components of the reaction do not affect or destabilize the supramolecular polymer, whereas in ambient or wet conditions the polymers are rapidly destabilized. Although spectroscopic investigations show no effect of water on the molecular structure of the supramolecular polymer, light scattering and atomic force microscopy experiments show that water increases the flexibility of the supramolecular polymer and decreases the polymer length. Through a series of titrations, we show that a cooperative interaction, involving the coordination of the amine catalyst to the porphyrin and complexation of the substrates to the flexible polymers invokes the depolymerization of the aggregates. Water crucially stabilizes these cooperative interactions to cause complete depolymerization in humid conditions. Additionally, we show that the humidity-controlled interference in the polymer stability occurs with various substrates, indicating that water may play a ubiquitous role in supramolecular polymerizations in oils. By controlling the amount of water, the influence of a covalent chemical process on noncovalent aggregates can be mediated, which holds great potential to forge a connection between chemical reactivity and supramolecular material structure. Moreover, our findings highlight that understanding cooperative interactions in multicomponent noncovalent systems is crucial to design complex molecular systems.
Identifiants
pubmed: 32543841
doi: 10.1021/jacs.0c04962
pmc: PMC7366503
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12400-12408Références
Chem Sci. 2018 Feb 14;9(10):2768-2773
pubmed: 29732062
Science. 2015 Feb 6;347(6222):646-51
pubmed: 25657246
Angew Chem Int Ed Engl. 2013 Jan 2;52(1):304-9
pubmed: 23001968
Nature. 2018 Jun;558(7708):100-103
pubmed: 29849144
Chem Soc Rev. 2012 Sep 21;41(18):6042-65
pubmed: 22618080
Org Biomol Chem. 2003 Oct 21;1(20):3471-91
pubmed: 14599006
Angew Chem Int Ed Engl. 2010 Jun 28;49(28):4825-8
pubmed: 20512834
Chem Rev. 2009 Nov;109(11):5687-754
pubmed: 19769364
J Biol Chem. 2011 Jul 1;286(26):22905-12
pubmed: 21482820
Science. 1994 Aug 12;265(5174):936-7
pubmed: 8052849
J Am Chem Soc. 2017 Nov 22;139(46):16568-16575
pubmed: 28845662
Angew Chem Int Ed Engl. 2014 Dec 22;53(52):14363-7
pubmed: 25354399
J Am Chem Soc. 2016 Nov 2;138(43):14347-14353
pubmed: 27726387
Small. 2018 Jan;14(3):
pubmed: 29141117
J Am Chem Soc. 2013 Nov 13;135(45):16789-92
pubmed: 24147566
Nature. 1995 Jul 27;376(6538):307-12
pubmed: 7630396
J Am Chem Soc. 2015 Mar 25;137(11):3924-32
pubmed: 25756951
Chem Commun (Camb). 2018 Apr 19;54(33):4112-4115
pubmed: 29620772
Nat Commun. 2017 Jun 19;8:15899
pubmed: 28627512
Science. 2015 Sep 4;349(6252):1075-9
pubmed: 26339025
Chem Commun (Camb). 2016 Jul 12;52(58):9009-12
pubmed: 26924715
Angew Chem Int Ed Engl. 2017 Dec 11;56(50):16008-16012
pubmed: 29035005
Nat Nanotechnol. 2018 Nov;13(11):1021-1027
pubmed: 30323361
J Am Chem Soc. 2018 Jun 27;140(25):7810-7819
pubmed: 29886728
Chemistry. 2014 Aug 18;20(34):10669-78
pubmed: 25042858
J Am Chem Soc. 2016 Jan 20;138(2):670-8
pubmed: 26699283
Chem Sci. 2017 Aug 1;8(9):6030-6036
pubmed: 28989632
Nat Chem. 2016 Jul;8(7):725-31
pubmed: 27325101
Nat Rev Mol Cell Biol. 2006 Mar;7(3):165-76
pubmed: 16482094
J Am Chem Soc. 2015 Mar 11;137(9):3300-7
pubmed: 25689054
Nature. 1987 Apr 9-15;326(6113):563-7
pubmed: 3561498
Angew Chem Int Ed Engl. 2017 Jan 24;56(5):1329-1333
pubmed: 28032950
Nature. 1978 Jun 8;273(5662):443-6
pubmed: 661956
Nat Chem. 2015 Feb;7(2):160-5
pubmed: 25615670
J Am Chem Soc. 2012 Aug 15;134(32):13482-91
pubmed: 22808949
Chem Soc Rev. 2017 Sep 18;46(18):5476-5490
pubmed: 28349143
Acc Chem Res. 2017 Aug 15;50(8):1928-1936
pubmed: 28692276
Angew Chem Int Ed Engl. 2010 May 25;49(23):3939-42
pubmed: 20379987
Angew Chem Int Ed Engl. 2017 May 15;56(21):5729-5733
pubmed: 28371081
Chem Commun (Camb). 2013 Mar 4;49(18):1796-8
pubmed: 23172361
Angew Chem Int Ed Engl. 2014 Jan 13;53(3):700-5
pubmed: 24352814
Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):2026-30
pubmed: 2000410
J Am Chem Soc. 2018 Aug 22;140(33):10570-10577
pubmed: 30056699
Nat Chem. 2014 Mar;6(3):188-95
pubmed: 24557132
Chem Soc Rev. 2017 Sep 18;46(18):5519-5535
pubmed: 28703817
Nat Chem. 2017 May;9(5):493-499
pubmed: 28430199