Methods and indicators for measuring patterns of human exposure to malaria vectors.
Exposure
Human-vector contact
Human-vector interaction
Insecticide-treated nets
Outdoor biting
Outdoor transmission
Residual malaria transmission
Journal
Malaria journal
ISSN: 1475-2875
Titre abrégé: Malar J
Pays: England
ID NLM: 101139802
Informations de publication
Date de publication:
16 Jun 2020
16 Jun 2020
Historique:
received:
08
11
2019
accepted:
29
05
2020
entrez:
18
6
2020
pubmed:
18
6
2020
medline:
30
1
2021
Statut:
epublish
Résumé
Effective targeting and evaluation of interventions that protect against adult malaria vectors requires an understanding of how gaps in personal protection arise. An improved understanding of human and mosquito behaviour, and how they overlap in time and space, is critical to estimating the impact of insecticide-treated nets (ITNs) and determining when and where supplemental personal protection tools are needed. Methods for weighting estimates of human exposure to biting Anopheles mosquitoes according to where people spend their time were first developed over half a century ago. However, crude indoor and outdoor biting rates are still commonly interpreted as indicative of human-vector contact patterns without any adjustment for human behaviour or the personal protection effects of ITNs. A small number of human behavioural variables capturing the distribution of human populations indoors and outdoors, whether they are awake or asleep, and if and when they use an ITN over the course of the night, can enable a more accurate representation of human biting exposure patterns. However, to date no clear guidance is available on what data should be collected, what indicators should be reported, or how they should be calculated. This article presents an integrated perspective on relevant indicators of human-vector interactions, the critical entomological and human behavioural data elements required to quantify human-vector interactions, and recommendations for collecting and analysing such data. If collected and used consistently, this information can contribute to an improved understanding of how malaria transmission persists in the context of current intervention tools, how exposure patterns may change as new vector control tools are introduced, and the potential impact and limitations of these tools. This article is intended to consolidate understanding around work on this topic to date and provide a consistent framework for building upon it. Additional work is needed to address remaining questions, including further development and validation of methods for entomological and human behavioural data collection and analysis.
Sections du résumé
BACKGROUND
BACKGROUND
Effective targeting and evaluation of interventions that protect against adult malaria vectors requires an understanding of how gaps in personal protection arise. An improved understanding of human and mosquito behaviour, and how they overlap in time and space, is critical to estimating the impact of insecticide-treated nets (ITNs) and determining when and where supplemental personal protection tools are needed. Methods for weighting estimates of human exposure to biting Anopheles mosquitoes according to where people spend their time were first developed over half a century ago. However, crude indoor and outdoor biting rates are still commonly interpreted as indicative of human-vector contact patterns without any adjustment for human behaviour or the personal protection effects of ITNs.
MAIN TEXT
METHODS
A small number of human behavioural variables capturing the distribution of human populations indoors and outdoors, whether they are awake or asleep, and if and when they use an ITN over the course of the night, can enable a more accurate representation of human biting exposure patterns. However, to date no clear guidance is available on what data should be collected, what indicators should be reported, or how they should be calculated. This article presents an integrated perspective on relevant indicators of human-vector interactions, the critical entomological and human behavioural data elements required to quantify human-vector interactions, and recommendations for collecting and analysing such data.
CONCLUSIONS
CONCLUSIONS
If collected and used consistently, this information can contribute to an improved understanding of how malaria transmission persists in the context of current intervention tools, how exposure patterns may change as new vector control tools are introduced, and the potential impact and limitations of these tools. This article is intended to consolidate understanding around work on this topic to date and provide a consistent framework for building upon it. Additional work is needed to address remaining questions, including further development and validation of methods for entomological and human behavioural data collection and analysis.
Identifiants
pubmed: 32546166
doi: 10.1186/s12936-020-03271-z
pii: 10.1186/s12936-020-03271-z
pmc: PMC7296719
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
207Subventions
Organisme : Medical Research Council
ID : MR/R015600/1
Pays : United Kingdom
Organisme : United States Agency for International Development
ID : USAID/JHU Cooperative Agreement No. AID-OAA-A-14-00057
Commentaires et corrections
Type : ErratumIn
Type : ErratumIn
Références
Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
pubmed: 26375008
pmcid: 4820050
doi: 10.1038/nature15535
Killeen GF, Kiware SS, Okumu FO, Sinka ME, Moyes CL, Massey NC, et al. Going beyond personal protection against mosquito bites to eliminate malaria transmission: population suppression of malaria vectors that exploit both human and animal blood. BMJ Global Health. 2017;2:e000198.
pubmed: 28589015
pmcid: 5444054
doi: 10.1136/bmjgh-2016-000198
Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;13:330.
pubmed: 25149656
pmcid: 4159526
doi: 10.1186/1475-2875-13-330
Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In: Anopheles mosquitoes: new insights into malaria vectors. Manguin S., Ed. IntechOpen, 2013:671–704.
Elliott R. Studies on man-vector contact in some malarious areas in Colombia. Bull World Health Organ. 1968;38:239–53.
pubmed: 5302300
pmcid: 2554320
Garrett-Jones C. A method for estimating the man-biting rate. Geneva, World Health Organization; 1964. ( https://apps.who.int/iris/handle/10665/65193 ).
Elliott R. The influence of vector behavior on malaria transmission. Am J Trop Med Hyg. 1972;21:755–63.
pubmed: 4561523
doi: 10.4269/ajtmh.1972.21.755
Killeen GF, Seyoum A, Gimnig JE, Stevenson JC, Drakeley CJ, Chitnis N. Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar J. 2014;13:146.
pubmed: 24739261
pmcid: 4041141
doi: 10.1186/1475-2875-13-146
Kiware SS, Chitnis N, Devine GJ, Moore SJ, Majambere S, Killeen GF. Biologically meaningful coverage indicators for eliminating malaria transmission. Biol Lett. 2012;8:874–7.
pubmed: 22647930
pmcid: 3440981
doi: 10.1098/rsbl.2012.0352
Lindblade KA. Does a mosquito bite when no one is around to hear it? Int J Epidemiol. 2013;42:247–9.
pubmed: 23508414
doi: 10.1093/ije/dyt004
Monroe A, Moore S, Koenker H, Lynch M, Ricotta E. Measuring and characterizing night time human behaviour as it relates to residual malaria transmission in sub-Saharan Africa: a review of the published literature. Malar J. 2019;18:6.
pubmed: 30634963
pmcid: 6329148
doi: 10.1186/s12936-019-2638-9
Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci USA. 2019;116:15086–95.
pubmed: 31285346
pmcid: 6660788
doi: 10.1073/pnas.1820646116
Killeen GF, Chaki PP, Reed TE, Moyes CL, Govella NJ. Entomological surveillance as a cornerstone of malaria elimination: a critical appraisal. In ‘Towards Malaria Elimination—A Leap Forward’. Manguin S, Dev V, Eds. IntechOpen, 2018.
Killeen GF. A revival of epidemiological entomology in Senegal. Am J Trop Med Hyg. 2018;98:1216–7.
pubmed: 29582735
pmcid: 5953399
doi: 10.4269/ajtmh.18-0162
Sougoufara S, Thiaw O, Cailleau A, Diagne N, Harry M, Bouganali C, et al. The impact of periodic distribution campaigns of long-lasting insecticidal-treated bed nets on malaria vector dynamics and human exposure in Dielmo, Senegal. Am J Trop Med Hyg. 2018;98:1343–52.
pubmed: 29557325
pmcid: 5953348
doi: 10.4269/ajtmh.17-0009
Huho B, Briët O, Seyoum A, Sikaala C, Bayoh N, Gimnig J. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol. 2013;42:235–47.
pubmed: 23396849
pmcid: 3600624
doi: 10.1093/ije/dys214
Barreaux P, Barreaux AM, Sternberg ED, Suh E, Waite JL, Whitehead SA, et al. Priorities for broadening the malaria vector control tool kit. Trends Parasitol. 2017;33:763–74.
pubmed: 28668377
pmcid: 5623623
doi: 10.1016/j.pt.2017.06.003
Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. 2013. In ‘Anopheles mosquitoes–New insights into malaria vectors’. Manguin S, Ed. IntechOpen. 2013:671-704.
Killeen GF, Seyoum A, Sikaala C, Zomboko AS, Gimnig JE, Govella NJ, et al. Eliminating malaria vectors. Parasit Vectors. 2013;6:172.
pubmed: 23758937
pmcid: 3685528
doi: 10.1186/1756-3305-6-172
Bradley J, Lines J, Fuseini G, Schwabe C, Monti F, Slotman M, et al. Outdoor biting by Anopheles mosquitoes on Bioko Island does not currently impact on malaria control. Malar J. 2015;14:170.
pubmed: 25895674
pmcid: 4429929
doi: 10.1186/s12936-015-0679-2
Magesa S, Wilkes T, Mnzava A, Njunwa K, Myamba J, Kivuyo M, et al. Trial of pyrethroid impregnated bednets in an area of Tanzania holoendemic for malaria Part 2. Effects on the malaria vector population. Acta Trop. 1991;49:97–108.
pubmed: 1680284
doi: 10.1016/0001-706X(91)90057-Q
Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HCJ, et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution. 2013;67:1218–30.
pubmed: 23550770
pmcid: 3655544
doi: 10.1111/evo.12063
Loll DK, Berthe S, Faye SL, Wone I, Koenker H, Arnold B, et al. User-determined end of net life in Senegal: a qualitative assessment of decision-making related to the retirement of expired nets. Malar J. 2013;12:337.
pubmed: 24053789
pmcid: 3856457
doi: 10.1186/1475-2875-12-337
Takken W. Do insecticide-treated bednets have an effect on malaria vectors? Trop Med Int Health. 2002;7:1022–30.
pubmed: 12460393
doi: 10.1046/j.1365-3156.2002.00983.x
Waite JL, Swain S, Lynch PA, Sharma S, Haque MA, Montgomery J, et al. Increasing the potential for malaria elimination by targeting zoophilic vectors. Sci Rep. 2017;7:40551.
pubmed: 28091570
pmcid: 5238397
doi: 10.1038/srep40551
Killeen GF, Marshall JM, Kiware SS, South AB, Tusting LS, Chaki PP, et al. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Global Health. 2017;2:e000212.
pubmed: 28589023
pmcid: 5444085
doi: 10.1136/bmjgh-2016-000212
Gleave K, Lissenden N, Richardson M, Choi L, Ranson H. Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD012776.pub2 .
pubmed: 30488945
pmcid: 6262905
doi: 10.1002/14651858.CD012776.pub2
Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet. 2016;387:1785–8.
pubmed: 26880124
pmcid: 6215693
doi: 10.1016/S0140-6736(15)00417-1
WHO. Guidelines for laboratory and field-testing of long-lasting insecticidal nets. Geneva, World Health Organization, 2013.
Silver JB, Service MW. Mosquito ecology: field sampling methods. Berlin: Springer Science & Business Media; 2008.
doi: 10.1007/978-1-4020-6666-5
Clements AN. The biology of mosquitoes: development, nutrition and reproduction. London: Chapman & Hall; 1992.
Meza FC, Kreppel KS, Maliti DF, Mlwale AT, Mirzai N, Killeen GF, et al. Mosquito electrocuting traps for directly measuring biting rates and host-preferences of Anopheles arabiensis and Anopheles funestus outdoors. Malar J. 2019;18:83.
pubmed: 30885205
pmcid: 6423841
doi: 10.1186/s12936-019-2726-x
Govella NJ, Maliti DF, Mlwale AT, Masallu JP, Mirzai N, Johnson PC, et al. An improved mosquito electrocuting trap that safely reproduces epidemiologically relevant metrics of mosquito human-feeding behaviours as determined by human landing catch. Malar J. 2016;15:465.
pubmed: 27618941
pmcid: 5020444
doi: 10.1186/s12936-016-1513-1
Sanou A, Guelbéogo WM, Nelli L, Toé KH, Zongo S, Ouédraogo P, et al. Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso. Malar J. 2019;18:386.
pubmed: 31791336
pmcid: 6889701
doi: 10.1186/s12936-019-3030-5
Limwagu AJ, Kaindoa EW, Ngowo HS, Hape E, Finda M, Mkandawile G, et al. Using a miniaturized double-net trap (DN-Mini) to assess relationships between indoor–outdoor biting preferences and physiological ages of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Malar J. 2019;18:282.
pubmed: 31438957
pmcid: 6704488
doi: 10.1186/s12936-019-2913-9
Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.
pubmed: 22701435
pmcid: 3372949
doi: 10.3389/fphys.2012.00199
Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J. 2014;13:331.
pubmed: 25150840
pmcid: 4150941
doi: 10.1186/1475-2875-13-331
Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.
pubmed: 21477321
pmcid: 3084176
doi: 10.1186/1475-2875-10-80
Kiware SS, Russell TL, Mtema ZJ, Chaki P, Lwetoijera D, Chanda J, et al. A generic schema and data collection forms applicable to diverse entomological studies of mosquitoes. Source Code Biol Med. 2016;11:4.
pubmed: 27022408
pmcid: 4809029
doi: 10.1186/s13029-016-0050-1
Ngowo HS, Kaindoa EW, Matthiopoulos J, Ferguson HM, Okumu FO. Variations in household microclimate affect outdoor-biting behaviour of malaria vectors. Wellcome Open Res. 2017;2:102.
pubmed: 29552642
pmcid: 5829465
doi: 10.12688/wellcomeopenres.12928.1
Magbity E, Lines J. Spatial and temporal distribution of Anopheles gambiae s.l. (Diptera: Culicidae) in two Tanzanian villages: implication for designing mosquito sampling routines. Bull Entomol Res. 2002;92:483–8.
pubmed: 17598299
doi: 10.1079/BER2002200
Smith T, Charlwood J, Takken W, Tanner M, Spiegelhalter D. Mapping the densities of malaria vectors within a single village. Acta Trop. 1995;59:1–18.
pubmed: 7785522
doi: 10.1016/0001-706X(94)00082-C
Thomsen EK, Koimbu G, Pulford J, Jamea-Maiasa S, Ura Y, Keven JB, et al. Mosquito behavior change after distribution of bednets results in decreased protection against malaria exposure. J Infect Dis. 2016;215:790–7.
pmcid: 5388271
Gryseels C, Durnez L, Gerrets R, Uk S, Suon S, Set S, et al. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia. Malar J. 2015;14:165.
pubmed: 25908498
pmcid: 4408599
doi: 10.1186/s12936-015-0689-0
Durnez L, Mao S, Denis L, Roelants P, Sochantha T, Coosemans M. Outdoor malaria transmission in forested villages of Cambodia. Malar J. 2013;12:329.
pubmed: 24044424
pmcid: 3848552
doi: 10.1186/1475-2875-12-329
Sherrard-Smith E, Griffin JT, Winskill P, Corbel V, Pennetier C, Djénontin A, et al. Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nat Commun. 2018;9:4982.
pubmed: 30478327
pmcid: 6255894
doi: 10.1038/s41467-018-07357-w
Bugoro H, Cooper RD, Butafa C, Iro’ofa C, Mackenzie DO, Chen C-C, et al. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination. Malar J. 2011;10:133.
pubmed: 21592366
pmcid: 3123245
doi: 10.1186/1475-2875-10-133
Geissbühler Y, Chaki P, Emidi B, Govella NJ, Shirima R, Mayagaya V, et al. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania. Malar J. 2007;6:126.
pubmed: 17880679
pmcid: 2039744
doi: 10.1186/1475-2875-6-126
Monroe A, Asamoah O, Lam Y, Koenker H, Psychas P, Lynch M, et al. Outdoor-sleeping and other night-time activities in northern Ghana: implications for residual transmission and malaria prevention. Malar J. 2015;14:35.
pubmed: 25627277
pmcid: 4320825
doi: 10.1186/s12936-015-0543-4
Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni AP, Swai JK, et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS ONE. 2019;14:e0217414.
pubmed: 31158255
pmcid: 6546273
doi: 10.1371/journal.pone.0217414
Cooke MK, Kahindi SC, Oriango RM, Owaga C, Ayoma E, Mabuka D, et al. A bite before bed’: exposure to malaria vectors outside the times of net use in the highlands of western Kenya. Malar J. 2015;14:259.
pubmed: 26109384
pmcid: 4479228
doi: 10.1186/s12936-015-0766-4
Bayoh MN, Walker ED, Kosgei J, Ombok M, Olang GB, Githeko AK, et al. Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasit Vectors. 2014;7:380.
pubmed: 25141761
doi: 10.1186/1756-3305-7-380
Kamau A, Mwangangi JM, Rono MK, Mogeni P, Omedo I, Midega J, et al. Variation in the effectiveness of insecticide treated nets against malaria and outdoor biting by vectors in Kilifi, Kenya. Wellcome Open Res. 2018;2:22.
pubmed: 30542660
pmcid: 6281023
doi: 10.12688/wellcomeopenres.11073.2
Killeen GF, Kihonda J, Lyimo E, Oketch FR, Kotas ME, Mathenge E, et al. Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect Dis. 2006;6:161.
pubmed: 17096840
pmcid: 1657018
doi: 10.1186/1471-2334-6-161
Moiroux N, Damien GB, Egrot M, Djenontin A, Chandre F, Corbel V, et al. Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets. PLoS ONE. 2014;9:e104967.
pubmed: 25115830
pmcid: 4130624
doi: 10.1371/journal.pone.0104967
Seyoum A, Sikaala CH, Chanda J, Chinula D, Ntamatungiro AJ, Hawela M, et al. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-east Zambia. Parasit Vectors. 2012;5:101.
pubmed: 22647493
pmcid: 3432592
doi: 10.1186/1756-3305-5-101
Household survey indicators for malaria control. MEASURE Evaluation, MEASURE DHS, President’s Malaria Initiative, Roll Back Malaria Partnership, UNICEF, World Health Organization. 2013. https://www.measureevaluation.org/resources/publications/ms-13-78 . Accessed 15 Mar 2019.
Msellemu D, Namango HI, Mwakalinga VM, Ntamatungiro AJ, Mlacha Y, Mtema ZJ, et al. The epidemiology of residual Plasmodium falciparum malaria transmission and infection burden in an African city with high coverage of multiple vector control measures. Malar J. 2016;15:288.
pubmed: 27216734
pmcid: 4877954
doi: 10.1186/s12936-016-1340-4
Van de Mortel TF. Faking it: social desirability response bias in self-report research. Aus J Adv Nurs. 2008;25:40–8.
Harvey SA, Lam Y, Martin NA, Olórtegui MP. Multiple entries and exits and other complex human patterns of insecticide-treated net use: a possible contributor to residual malaria transmission? Malar J. 2017;16:265.
pubmed: 28673285
pmcid: 5496366
doi: 10.1186/s12936-017-1918-5
Msellemu D, Shemdoe A, Makungu C, Mlacha Y, Kannady K, Dongus S, et al. The underlying reasons for very high levels of bed net use, and higher malaria infection prevalence among bed net users than non-users in the Tanzanian city of Dar es Salaam: a qualitative study. Malar J. 2017;16:423.
pubmed: 29061127
pmcid: 5653998
doi: 10.1186/s12936-017-2067-6
Bernard HR. Social research methods: Qualitative and quantitative approaches. Thousand Oaks: Sage Publications; 2012.
Gittelsohn J, Shankar AV, West KP, Ram RM, Gnywali T. Estimating reactivity in direct observation studies of health behaviors. Human Organization. 1997;56:182–9.
doi: 10.17730/humo.56.2.c7x0532q2u86m207
Harvey SA, Olórtegui MP, Leontsini E, Winch PJ. They’ll change what they’re doing if they know that you’re watching: measuring reactivity in health behavior because of an observer’s presence—a case from the Peruvian Amazon. Field Methods. 2009;21:3–25.
doi: 10.1177/1525822X08323987
Nonaka D, Laimanivong S, Kobayashi J, Chindavonsa K, Kano S, Vanisaveth V, et al. Is staying overnight in a farming hut a risk factor for malaria infection in a setting with insecticide-treated bed nets in rural Laos? Malar J. 2010;9:372.
pubmed: 21176242
pmcid: 3224235
doi: 10.1186/1475-2875-9-372
Swai JK, Finda MF, Madumla EP, Lingamba GF, Moshi IR, Rafiq MY, et al. Studies on mosquito biting risk among migratory rice farmers in rural south-eastern Tanzania and development of a portable mosquito-proof hut. Malar J. 2016;15:564.
pubmed: 27876050
pmcid: 5120485
doi: 10.1186/s12936-016-1616-8
Edwards HM, Sriwichai P, Kirabittir K, Prachumsri J, Chavez IF, Hii J. Transmission risk beyond the village: entomological and human factors contributing to residual malaria transmission in an area approaching malaria elimination on the Thailand-Myanmar border. Malar J. 2019;18:221.
pubmed: 31262309
pmcid: 6604376
doi: 10.1186/s12936-019-2852-5
Hayes R, Bennett S. Simple sample size calculation for cluster-randomized trials. Int J Epidemiol. 1999;28:319–26.
pubmed: 10342698
doi: 10.1093/ije/28.2.319
Johnson PC, Barry SJ, Ferguson HM, Müller P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol Evol. 2015;6:133–42.
pubmed: 25893088
doi: 10.1111/2041-210X.12306
Monroe A, Mihayo K, Okumu F, Finda M, Moore S, Koenker H, et al. Human behaviour and residual malaria transmission in Zanzibar: findings from in-depth interviews and direct observation of community events. Malar J. 2019;18:220.
pubmed: 31262306
pmcid: 6604484
doi: 10.1186/s12936-019-2855-2
Koenker H, Taylor C, Burgert-Brucker CR, Thwing J, Fish T, Kilian A. Quantifying seasonal variation in insecticide-treated net use among those with access. Am J Trop Med Hyg. 2019;101:371–82.
pubmed: 31264562
pmcid: 6685578
doi: 10.4269/ajtmh.19-0249
Ahorlu CS, Adongo P, Koenker H, Zigirumugabe S, Sika-Bright S, Koka E, et al. Understanding the gap between access and use: a qualitative study on barriers and facilitators to insecticide-treated net use in Ghana. Malar J. 2019;18:417.
pubmed: 31831004
pmcid: 6909499
doi: 10.1186/s12936-019-3051-0
Chitnis N, Hyman JM, Cushing JM. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol. 2008;70:1272–96.
pubmed: 18293044
doi: 10.1007/s11538-008-9299-0
Churcher TS, Trape J-F, Cohuet A. Human-to-mosquito transmission efficiency increases as malaria is controlled. Nat Commun. 2015;6:6054.
pubmed: 25597498
doi: 10.1038/ncomms7054
Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7:e1000324.
pubmed: 20711482
pmcid: 2919425
doi: 10.1371/journal.pmed.1000324
Kiware SS, Chitnis N, Tatarsky A, Wu S, Castellanos HMS, Gosling R, et al. Attacking the mosquito on multiple fronts: insights from the Vector Control Optimization Model (VCOM) for malaria elimination. PLoS ONE. 2017;12:e0187680.
pubmed: 29194440
pmcid: 5711017
doi: 10.1371/journal.pone.0187680
Eckhoff PA. A malaria transmission-directed model of mosquito life cycle and ecology. Malar J. 2011;10:303.
pubmed: 21999664
pmcid: 3224385
doi: 10.1186/1475-2875-10-303
Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis. 2016;16:465–72.
pubmed: 26809816
pmcid: 5206792
doi: 10.1016/S1473-3099(15)00423-5
Winskill P, Walker PG, Griffin JT, Ghani AC. Modelling the cost-effectiveness of introducing the RTS, S malaria vaccine relative to scaling up other malaria interventions in sub-Saharan Africa. BMJ Global Health. 2017;2:e000090.
pubmed: 28588994
pmcid: 5321383
doi: 10.1136/bmjgh-2016-000090
Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 2007;5:e42.
pubmed: 17311470
pmcid: 1802755
doi: 10.1371/journal.pbio.0050042
Gonçalves BP, Kapulu MC, Sawa P, Guelbéogo WM, Tiono AB, Grignard L, et al. Examining the human infectious reservoir for Plasmodium falciparum malaria in areas of differing transmission intensity. Nat Commun. 2017;8:1133.
pubmed: 29074880
pmcid: 5658399
doi: 10.1038/s41467-017-01270-4
Monroe A, Harvey SA, Lam Y, Muhangi D, Loll D, Kabali AT, et al. “People will say that I am proud”: a qualitative study of barriers to bed net use away from home in four Ugandan districts. Malar J. 2014;13:82.
pubmed: 24602371
pmcid: 3973854
doi: 10.1186/1475-2875-13-82
Okumu FO, Moore SJ. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10:208.
pubmed: 21798053
pmcid: 3155911
doi: 10.1186/1475-2875-10-208
Maliti DV, Govella NJ, Killeen GF, Mirzai N, Johnson PC, Kreppel K, et al. Development and evaluation of mosquito-electrocuting traps as alternatives to the human landing catch technique for sampling host-seeking malaria vectors. Malar J. 2015;14:502.
pubmed: 26670881
pmcid: 4681165
doi: 10.1186/s12936-015-1025-4
Majambere S, Massue DJ, Mlacha Y, Govella NJ, Magesa SM, Killeen GF. Advantages and limitations of commercially available electrocuting grids for studying mosquito behaviour. Parasit Vectors. 2013;6:53.
pubmed: 23497704
pmcid: 3602112
doi: 10.1186/1756-3305-6-53
Briët OJ, Huho BJ, Gimnig JE, Bayoh N, Seyoum A, Sikaala CH, et al. Applications and limitations of Centers for Disease Control and Prevention miniature light traps for measuring biting densities of African malaria vector populations: a pooled-analysis of 13 comparisons with human landing catches. Malar J. 2015;14:247.
pubmed: 26082036
pmcid: 4470360
doi: 10.1186/s12936-015-0761-9