Methods and indicators for measuring patterns of human exposure to malaria vectors.

Exposure Human-vector contact Human-vector interaction Insecticide-treated nets Outdoor biting Outdoor transmission Residual malaria transmission

Journal

Malaria journal
ISSN: 1475-2875
Titre abrégé: Malar J
Pays: England
ID NLM: 101139802

Informations de publication

Date de publication:
16 Jun 2020
Historique:
received: 08 11 2019
accepted: 29 05 2020
entrez: 18 6 2020
pubmed: 18 6 2020
medline: 30 1 2021
Statut: epublish

Résumé

Effective targeting and evaluation of interventions that protect against adult malaria vectors requires an understanding of how gaps in personal protection arise. An improved understanding of human and mosquito behaviour, and how they overlap in time and space, is critical to estimating the impact of insecticide-treated nets (ITNs) and determining when and where supplemental personal protection tools are needed. Methods for weighting estimates of human exposure to biting Anopheles mosquitoes according to where people spend their time were first developed over half a century ago. However, crude indoor and outdoor biting rates are still commonly interpreted as indicative of human-vector contact patterns without any adjustment for human behaviour or the personal protection effects of ITNs. A small number of human behavioural variables capturing the distribution of human populations indoors and outdoors, whether they are awake or asleep, and if and when they use an ITN over the course of the night, can enable a more accurate representation of human biting exposure patterns. However, to date no clear guidance is available on what data should be collected, what indicators should be reported, or how they should be calculated. This article presents an integrated perspective on relevant indicators of human-vector interactions, the critical entomological and human behavioural data elements required to quantify human-vector interactions, and recommendations for collecting and analysing such data. If collected and used consistently, this information can contribute to an improved understanding of how malaria transmission persists in the context of current intervention tools, how exposure patterns may change as new vector control tools are introduced, and the potential impact and limitations of these tools. This article is intended to consolidate understanding around work on this topic to date and provide a consistent framework for building upon it. Additional work is needed to address remaining questions, including further development and validation of methods for entomological and human behavioural data collection and analysis.

Sections du résumé

BACKGROUND BACKGROUND
Effective targeting and evaluation of interventions that protect against adult malaria vectors requires an understanding of how gaps in personal protection arise. An improved understanding of human and mosquito behaviour, and how they overlap in time and space, is critical to estimating the impact of insecticide-treated nets (ITNs) and determining when and where supplemental personal protection tools are needed. Methods for weighting estimates of human exposure to biting Anopheles mosquitoes according to where people spend their time were first developed over half a century ago. However, crude indoor and outdoor biting rates are still commonly interpreted as indicative of human-vector contact patterns without any adjustment for human behaviour or the personal protection effects of ITNs.
MAIN TEXT METHODS
A small number of human behavioural variables capturing the distribution of human populations indoors and outdoors, whether they are awake or asleep, and if and when they use an ITN over the course of the night, can enable a more accurate representation of human biting exposure patterns. However, to date no clear guidance is available on what data should be collected, what indicators should be reported, or how they should be calculated. This article presents an integrated perspective on relevant indicators of human-vector interactions, the critical entomological and human behavioural data elements required to quantify human-vector interactions, and recommendations for collecting and analysing such data.
CONCLUSIONS CONCLUSIONS
If collected and used consistently, this information can contribute to an improved understanding of how malaria transmission persists in the context of current intervention tools, how exposure patterns may change as new vector control tools are introduced, and the potential impact and limitations of these tools. This article is intended to consolidate understanding around work on this topic to date and provide a consistent framework for building upon it. Additional work is needed to address remaining questions, including further development and validation of methods for entomological and human behavioural data collection and analysis.

Identifiants

pubmed: 32546166
doi: 10.1186/s12936-020-03271-z
pii: 10.1186/s12936-020-03271-z
pmc: PMC7296719
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

207

Subventions

Organisme : Medical Research Council
ID : MR/R015600/1
Pays : United Kingdom
Organisme : United States Agency for International Development
ID : USAID/JHU Cooperative Agreement No. AID-OAA-A-14-00057

Commentaires et corrections

Type : ErratumIn
Type : ErratumIn

Références

Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
pubmed: 26375008 pmcid: 4820050 doi: 10.1038/nature15535
Killeen GF, Kiware SS, Okumu FO, Sinka ME, Moyes CL, Massey NC, et al. Going beyond personal protection against mosquito bites to eliminate malaria transmission: population suppression of malaria vectors that exploit both human and animal blood. BMJ Global Health. 2017;2:e000198.
pubmed: 28589015 pmcid: 5444054 doi: 10.1136/bmjgh-2016-000198
Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;13:330.
pubmed: 25149656 pmcid: 4159526 doi: 10.1186/1475-2875-13-330
Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In: Anopheles mosquitoes: new insights into malaria vectors. Manguin S., Ed. IntechOpen, 2013:671–704.
Elliott R. Studies on man-vector contact in some malarious areas in Colombia. Bull World Health Organ. 1968;38:239–53.
pubmed: 5302300 pmcid: 2554320
Garrett-Jones C. A method for estimating the man-biting rate. Geneva, World Health Organization; 1964. ( https://apps.who.int/iris/handle/10665/65193 ).
Elliott R. The influence of vector behavior on malaria transmission. Am J Trop Med Hyg. 1972;21:755–63.
pubmed: 4561523 doi: 10.4269/ajtmh.1972.21.755
Killeen GF, Seyoum A, Gimnig JE, Stevenson JC, Drakeley CJ, Chitnis N. Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes. Malar J. 2014;13:146.
pubmed: 24739261 pmcid: 4041141 doi: 10.1186/1475-2875-13-146
Kiware SS, Chitnis N, Devine GJ, Moore SJ, Majambere S, Killeen GF. Biologically meaningful coverage indicators for eliminating malaria transmission. Biol Lett. 2012;8:874–7.
pubmed: 22647930 pmcid: 3440981 doi: 10.1098/rsbl.2012.0352
Lindblade KA. Does a mosquito bite when no one is around to hear it? Int J Epidemiol. 2013;42:247–9.
pubmed: 23508414 doi: 10.1093/ije/dyt004
Monroe A, Moore S, Koenker H, Lynch M, Ricotta E. Measuring and characterizing night time human behaviour as it relates to residual malaria transmission in sub-Saharan Africa: a review of the published literature. Malar J. 2019;18:6.
pubmed: 30634963 pmcid: 6329148 doi: 10.1186/s12936-019-2638-9
Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci USA. 2019;116:15086–95.
pubmed: 31285346 pmcid: 6660788 doi: 10.1073/pnas.1820646116
Killeen GF, Chaki PP, Reed TE, Moyes CL, Govella NJ. Entomological surveillance as a cornerstone of malaria elimination: a critical appraisal. In ‘Towards Malaria Elimination—A Leap Forward’. Manguin S, Dev V, Eds. IntechOpen, 2018.
Killeen GF. A revival of epidemiological entomology in Senegal. Am J Trop Med Hyg. 2018;98:1216–7.
pubmed: 29582735 pmcid: 5953399 doi: 10.4269/ajtmh.18-0162
Sougoufara S, Thiaw O, Cailleau A, Diagne N, Harry M, Bouganali C, et al. The impact of periodic distribution campaigns of long-lasting insecticidal-treated bed nets on malaria vector dynamics and human exposure in Dielmo, Senegal. Am J Trop Med Hyg. 2018;98:1343–52.
pubmed: 29557325 pmcid: 5953348 doi: 10.4269/ajtmh.17-0009
Huho B, Briët O, Seyoum A, Sikaala C, Bayoh N, Gimnig J. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol. 2013;42:235–47.
pubmed: 23396849 pmcid: 3600624 doi: 10.1093/ije/dys214
Barreaux P, Barreaux AM, Sternberg ED, Suh E, Waite JL, Whitehead SA, et al. Priorities for broadening the malaria vector control tool kit. Trends Parasitol. 2017;33:763–74.
pubmed: 28668377 pmcid: 5623623 doi: 10.1016/j.pt.2017.06.003
Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. 2013. In ‘Anopheles mosquitoes–New insights into malaria vectors’. Manguin S, Ed. IntechOpen. 2013:671-704.
Killeen GF, Seyoum A, Sikaala C, Zomboko AS, Gimnig JE, Govella NJ, et al. Eliminating malaria vectors. Parasit Vectors. 2013;6:172.
pubmed: 23758937 pmcid: 3685528 doi: 10.1186/1756-3305-6-172
Bradley J, Lines J, Fuseini G, Schwabe C, Monti F, Slotman M, et al. Outdoor biting by Anopheles mosquitoes on Bioko Island does not currently impact on malaria control. Malar J. 2015;14:170.
pubmed: 25895674 pmcid: 4429929 doi: 10.1186/s12936-015-0679-2
Magesa S, Wilkes T, Mnzava A, Njunwa K, Myamba J, Kivuyo M, et al. Trial of pyrethroid impregnated bednets in an area of Tanzania holoendemic for malaria Part 2. Effects on the malaria vector population. Acta Trop. 1991;49:97–108.
pubmed: 1680284 doi: 10.1016/0001-706X(91)90057-Q
Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HCJ, et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution. 2013;67:1218–30.
pubmed: 23550770 pmcid: 3655544 doi: 10.1111/evo.12063
Loll DK, Berthe S, Faye SL, Wone I, Koenker H, Arnold B, et al. User-determined end of net life in Senegal: a qualitative assessment of decision-making related to the retirement of expired nets. Malar J. 2013;12:337.
pubmed: 24053789 pmcid: 3856457 doi: 10.1186/1475-2875-12-337
Takken W. Do insecticide-treated bednets have an effect on malaria vectors? Trop Med Int Health. 2002;7:1022–30.
pubmed: 12460393 doi: 10.1046/j.1365-3156.2002.00983.x
Waite JL, Swain S, Lynch PA, Sharma S, Haque MA, Montgomery J, et al. Increasing the potential for malaria elimination by targeting zoophilic vectors. Sci Rep. 2017;7:40551.
pubmed: 28091570 pmcid: 5238397 doi: 10.1038/srep40551
Killeen GF, Marshall JM, Kiware SS, South AB, Tusting LS, Chaki PP, et al. Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact. BMJ Global Health. 2017;2:e000212.
pubmed: 28589023 pmcid: 5444085 doi: 10.1136/bmjgh-2016-000212
Gleave K, Lissenden N, Richardson M, Choi L, Ranson H. Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD012776.pub2 .
pubmed: 30488945 pmcid: 6262905 doi: 10.1002/14651858.CD012776.pub2
Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet. 2016;387:1785–8.
pubmed: 26880124 pmcid: 6215693 doi: 10.1016/S0140-6736(15)00417-1
WHO. Guidelines for laboratory and field-testing of long-lasting insecticidal nets. Geneva, World Health Organization, 2013.
Silver JB, Service MW. Mosquito ecology: field sampling methods. Berlin: Springer Science & Business Media; 2008.
doi: 10.1007/978-1-4020-6666-5
Clements AN. The biology of mosquitoes: development, nutrition and reproduction. London: Chapman & Hall; 1992.
Meza FC, Kreppel KS, Maliti DF, Mlwale AT, Mirzai N, Killeen GF, et al. Mosquito electrocuting traps for directly measuring biting rates and host-preferences of Anopheles arabiensis and Anopheles funestus outdoors. Malar J. 2019;18:83.
pubmed: 30885205 pmcid: 6423841 doi: 10.1186/s12936-019-2726-x
Govella NJ, Maliti DF, Mlwale AT, Masallu JP, Mirzai N, Johnson PC, et al. An improved mosquito electrocuting trap that safely reproduces epidemiologically relevant metrics of mosquito human-feeding behaviours as determined by human landing catch. Malar J. 2016;15:465.
pubmed: 27618941 pmcid: 5020444 doi: 10.1186/s12936-016-1513-1
Sanou A, Guelbéogo WM, Nelli L, Toé KH, Zongo S, Ouédraogo P, et al. Evaluation of mosquito electrocuting traps as a safe alternative to the human landing catch for measuring human exposure to malaria vectors in Burkina Faso. Malar J. 2019;18:386.
pubmed: 31791336 pmcid: 6889701 doi: 10.1186/s12936-019-3030-5
Limwagu AJ, Kaindoa EW, Ngowo HS, Hape E, Finda M, Mkandawile G, et al. Using a miniaturized double-net trap (DN-Mini) to assess relationships between indoor–outdoor biting preferences and physiological ages of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Malar J. 2019;18:282.
pubmed: 31438957 pmcid: 6704488 doi: 10.1186/s12936-019-2913-9
Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination. Front Physiol. 2012;3:199.
pubmed: 22701435 pmcid: 3372949 doi: 10.3389/fphys.2012.00199
Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J. 2014;13:331.
pubmed: 25150840 pmcid: 4150941 doi: 10.1186/1475-2875-13-331
Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J. 2011;10:80.
pubmed: 21477321 pmcid: 3084176 doi: 10.1186/1475-2875-10-80
Kiware SS, Russell TL, Mtema ZJ, Chaki P, Lwetoijera D, Chanda J, et al. A generic schema and data collection forms applicable to diverse entomological studies of mosquitoes. Source Code Biol Med. 2016;11:4.
pubmed: 27022408 pmcid: 4809029 doi: 10.1186/s13029-016-0050-1
Ngowo HS, Kaindoa EW, Matthiopoulos J, Ferguson HM, Okumu FO. Variations in household microclimate affect outdoor-biting behaviour of malaria vectors. Wellcome Open Res. 2017;2:102.
pubmed: 29552642 pmcid: 5829465 doi: 10.12688/wellcomeopenres.12928.1
Magbity E, Lines J. Spatial and temporal distribution of Anopheles gambiae s.l. (Diptera: Culicidae) in two Tanzanian villages: implication for designing mosquito sampling routines. Bull Entomol Res. 2002;92:483–8.
pubmed: 17598299 doi: 10.1079/BER2002200
Smith T, Charlwood J, Takken W, Tanner M, Spiegelhalter D. Mapping the densities of malaria vectors within a single village. Acta Trop. 1995;59:1–18.
pubmed: 7785522 doi: 10.1016/0001-706X(94)00082-C
Thomsen EK, Koimbu G, Pulford J, Jamea-Maiasa S, Ura Y, Keven JB, et al. Mosquito behavior change after distribution of bednets results in decreased protection against malaria exposure. J Infect Dis. 2016;215:790–7.
pmcid: 5388271
Gryseels C, Durnez L, Gerrets R, Uk S, Suon S, Set S, et al. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia. Malar J. 2015;14:165.
pubmed: 25908498 pmcid: 4408599 doi: 10.1186/s12936-015-0689-0
Durnez L, Mao S, Denis L, Roelants P, Sochantha T, Coosemans M. Outdoor malaria transmission in forested villages of Cambodia. Malar J. 2013;12:329.
pubmed: 24044424 pmcid: 3848552 doi: 10.1186/1475-2875-12-329
Sherrard-Smith E, Griffin JT, Winskill P, Corbel V, Pennetier C, Djénontin A, et al. Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nat Commun. 2018;9:4982.
pubmed: 30478327 pmcid: 6255894 doi: 10.1038/s41467-018-07357-w
Bugoro H, Cooper RD, Butafa C, Iro’ofa C, Mackenzie DO, Chen C-C, et al. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination. Malar J. 2011;10:133.
pubmed: 21592366 pmcid: 3123245 doi: 10.1186/1475-2875-10-133
Geissbühler Y, Chaki P, Emidi B, Govella NJ, Shirima R, Mayagaya V, et al. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania. Malar J. 2007;6:126.
pubmed: 17880679 pmcid: 2039744 doi: 10.1186/1475-2875-6-126
Monroe A, Asamoah O, Lam Y, Koenker H, Psychas P, Lynch M, et al. Outdoor-sleeping and other night-time activities in northern Ghana: implications for residual transmission and malaria prevention. Malar J. 2015;14:35.
pubmed: 25627277 pmcid: 4320825 doi: 10.1186/s12936-015-0543-4
Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni AP, Swai JK, et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS ONE. 2019;14:e0217414.
pubmed: 31158255 pmcid: 6546273 doi: 10.1371/journal.pone.0217414
Cooke MK, Kahindi SC, Oriango RM, Owaga C, Ayoma E, Mabuka D, et al. A bite before bed’: exposure to malaria vectors outside the times of net use in the highlands of western Kenya. Malar J. 2015;14:259.
pubmed: 26109384 pmcid: 4479228 doi: 10.1186/s12936-015-0766-4
Bayoh MN, Walker ED, Kosgei J, Ombok M, Olang GB, Githeko AK, et al. Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasit Vectors. 2014;7:380.
pubmed: 25141761 doi: 10.1186/1756-3305-7-380
Kamau A, Mwangangi JM, Rono MK, Mogeni P, Omedo I, Midega J, et al. Variation in the effectiveness of insecticide treated nets against malaria and outdoor biting by vectors in Kilifi, Kenya. Wellcome Open Res. 2018;2:22.
pubmed: 30542660 pmcid: 6281023 doi: 10.12688/wellcomeopenres.11073.2
Killeen GF, Kihonda J, Lyimo E, Oketch FR, Kotas ME, Mathenge E, et al. Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania. BMC Infect Dis. 2006;6:161.
pubmed: 17096840 pmcid: 1657018 doi: 10.1186/1471-2334-6-161
Moiroux N, Damien GB, Egrot M, Djenontin A, Chandre F, Corbel V, et al. Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets. PLoS ONE. 2014;9:e104967.
pubmed: 25115830 pmcid: 4130624 doi: 10.1371/journal.pone.0104967
Seyoum A, Sikaala CH, Chanda J, Chinula D, Ntamatungiro AJ, Hawela M, et al. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, South-east Zambia. Parasit Vectors. 2012;5:101.
pubmed: 22647493 pmcid: 3432592 doi: 10.1186/1756-3305-5-101
Household survey indicators for malaria control. MEASURE Evaluation, MEASURE DHS, President’s Malaria Initiative, Roll Back Malaria Partnership, UNICEF, World Health Organization. 2013. https://www.measureevaluation.org/resources/publications/ms-13-78 . Accessed 15 Mar 2019.
Msellemu D, Namango HI, Mwakalinga VM, Ntamatungiro AJ, Mlacha Y, Mtema ZJ, et al. The epidemiology of residual Plasmodium falciparum malaria transmission and infection burden in an African city with high coverage of multiple vector control measures. Malar J. 2016;15:288.
pubmed: 27216734 pmcid: 4877954 doi: 10.1186/s12936-016-1340-4
Van de Mortel TF. Faking it: social desirability response bias in self-report research. Aus J Adv Nurs. 2008;25:40–8.
Harvey SA, Lam Y, Martin NA, Olórtegui MP. Multiple entries and exits and other complex human patterns of insecticide-treated net use: a possible contributor to residual malaria transmission? Malar J. 2017;16:265.
pubmed: 28673285 pmcid: 5496366 doi: 10.1186/s12936-017-1918-5
Msellemu D, Shemdoe A, Makungu C, Mlacha Y, Kannady K, Dongus S, et al. The underlying reasons for very high levels of bed net use, and higher malaria infection prevalence among bed net users than non-users in the Tanzanian city of Dar es Salaam: a qualitative study. Malar J. 2017;16:423.
pubmed: 29061127 pmcid: 5653998 doi: 10.1186/s12936-017-2067-6
Bernard HR. Social research methods: Qualitative and quantitative approaches. Thousand Oaks: Sage Publications; 2012.
Gittelsohn J, Shankar AV, West KP, Ram RM, Gnywali T. Estimating reactivity in direct observation studies of health behaviors. Human Organization. 1997;56:182–9.
doi: 10.17730/humo.56.2.c7x0532q2u86m207
Harvey SA, Olórtegui MP, Leontsini E, Winch PJ. They’ll change what they’re doing if they know that you’re watching: measuring reactivity in health behavior because of an observer’s presence—a case from the Peruvian Amazon. Field Methods. 2009;21:3–25.
doi: 10.1177/1525822X08323987
Nonaka D, Laimanivong S, Kobayashi J, Chindavonsa K, Kano S, Vanisaveth V, et al. Is staying overnight in a farming hut a risk factor for malaria infection in a setting with insecticide-treated bed nets in rural Laos? Malar J. 2010;9:372.
pubmed: 21176242 pmcid: 3224235 doi: 10.1186/1475-2875-9-372
Swai JK, Finda MF, Madumla EP, Lingamba GF, Moshi IR, Rafiq MY, et al. Studies on mosquito biting risk among migratory rice farmers in rural south-eastern Tanzania and development of a portable mosquito-proof hut. Malar J. 2016;15:564.
pubmed: 27876050 pmcid: 5120485 doi: 10.1186/s12936-016-1616-8
Edwards HM, Sriwichai P, Kirabittir K, Prachumsri J, Chavez IF, Hii J. Transmission risk beyond the village: entomological and human factors contributing to residual malaria transmission in an area approaching malaria elimination on the Thailand-Myanmar border. Malar J. 2019;18:221.
pubmed: 31262309 pmcid: 6604376 doi: 10.1186/s12936-019-2852-5
Hayes R, Bennett S. Simple sample size calculation for cluster-randomized trials. Int J Epidemiol. 1999;28:319–26.
pubmed: 10342698 doi: 10.1093/ije/28.2.319
Johnson PC, Barry SJ, Ferguson HM, Müller P. Power analysis for generalized linear mixed models in ecology and evolution. Methods Ecol Evol. 2015;6:133–42.
pubmed: 25893088 doi: 10.1111/2041-210X.12306
Monroe A, Mihayo K, Okumu F, Finda M, Moore S, Koenker H, et al. Human behaviour and residual malaria transmission in Zanzibar: findings from in-depth interviews and direct observation of community events. Malar J. 2019;18:220.
pubmed: 31262306 pmcid: 6604484 doi: 10.1186/s12936-019-2855-2
Koenker H, Taylor C, Burgert-Brucker CR, Thwing J, Fish T, Kilian A. Quantifying seasonal variation in insecticide-treated net use among those with access. Am J Trop Med Hyg. 2019;101:371–82.
pubmed: 31264562 pmcid: 6685578 doi: 10.4269/ajtmh.19-0249
Ahorlu CS, Adongo P, Koenker H, Zigirumugabe S, Sika-Bright S, Koka E, et al. Understanding the gap between access and use: a qualitative study on barriers and facilitators to insecticide-treated net use in Ghana. Malar J. 2019;18:417.
pubmed: 31831004 pmcid: 6909499 doi: 10.1186/s12936-019-3051-0
Chitnis N, Hyman JM, Cushing JM. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol. 2008;70:1272–96.
pubmed: 18293044 doi: 10.1007/s11538-008-9299-0
Churcher TS, Trape J-F, Cohuet A. Human-to-mosquito transmission efficiency increases as malaria is controlled. Nat Commun. 2015;6:6054.
pubmed: 25597498 doi: 10.1038/ncomms7054
Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7:e1000324.
pubmed: 20711482 pmcid: 2919425 doi: 10.1371/journal.pmed.1000324
Kiware SS, Chitnis N, Tatarsky A, Wu S, Castellanos HMS, Gosling R, et al. Attacking the mosquito on multiple fronts: insights from the Vector Control Optimization Model (VCOM) for malaria elimination. PLoS ONE. 2017;12:e0187680.
pubmed: 29194440 pmcid: 5711017 doi: 10.1371/journal.pone.0187680
Eckhoff PA. A malaria transmission-directed model of mosquito life cycle and ecology. Malar J. 2011;10:303.
pubmed: 21999664 pmcid: 3224385 doi: 10.1186/1475-2875-10-303
Griffin JT, Bhatt S, Sinka ME, Gething PW, Lynch M, Patouillard E, et al. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study. Lancet Infect Dis. 2016;16:465–72.
pubmed: 26809816 pmcid: 5206792 doi: 10.1016/S1473-3099(15)00423-5
Winskill P, Walker PG, Griffin JT, Ghani AC. Modelling the cost-effectiveness of introducing the RTS, S malaria vaccine relative to scaling up other malaria interventions in sub-Saharan Africa. BMJ Global Health. 2017;2:e000090.
pubmed: 28588994 pmcid: 5321383 doi: 10.1136/bmjgh-2016-000090
Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 2007;5:e42.
pubmed: 17311470 pmcid: 1802755 doi: 10.1371/journal.pbio.0050042
Gonçalves BP, Kapulu MC, Sawa P, Guelbéogo WM, Tiono AB, Grignard L, et al. Examining the human infectious reservoir for Plasmodium falciparum malaria in areas of differing transmission intensity. Nat Commun. 2017;8:1133.
pubmed: 29074880 pmcid: 5658399 doi: 10.1038/s41467-017-01270-4
Monroe A, Harvey SA, Lam Y, Muhangi D, Loll D, Kabali AT, et al. “People will say that I am proud”: a qualitative study of barriers to bed net use away from home in four Ugandan districts. Malar J. 2014;13:82.
pubmed: 24602371 pmcid: 3973854 doi: 10.1186/1475-2875-13-82
Okumu FO, Moore SJ. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10:208.
pubmed: 21798053 pmcid: 3155911 doi: 10.1186/1475-2875-10-208
Maliti DV, Govella NJ, Killeen GF, Mirzai N, Johnson PC, Kreppel K, et al. Development and evaluation of mosquito-electrocuting traps as alternatives to the human landing catch technique for sampling host-seeking malaria vectors. Malar J. 2015;14:502.
pubmed: 26670881 pmcid: 4681165 doi: 10.1186/s12936-015-1025-4
Majambere S, Massue DJ, Mlacha Y, Govella NJ, Magesa SM, Killeen GF. Advantages and limitations of commercially available electrocuting grids for studying mosquito behaviour. Parasit Vectors. 2013;6:53.
pubmed: 23497704 pmcid: 3602112 doi: 10.1186/1756-3305-6-53
Briët OJ, Huho BJ, Gimnig JE, Bayoh N, Seyoum A, Sikaala CH, et al. Applications and limitations of Centers for Disease Control and Prevention miniature light traps for measuring biting densities of African malaria vector populations: a pooled-analysis of 13 comparisons with human landing catches. Malar J. 2015;14:247.
pubmed: 26082036 pmcid: 4470360 doi: 10.1186/s12936-015-0761-9

Auteurs

April Monroe (A)

Johns Hopkins Center for Communication Programs, PMI VectorWorks Project, Baltimore, MD, USA. amonro10@jhu.edu.
University of Basel, Basel, Switzerland. amonro10@jhu.edu.
Swiss Tropical and Public Health Institute, Basel, Switzerland. amonro10@jhu.edu.

Sarah Moore (S)

University of Basel, Basel, Switzerland.
Swiss Tropical and Public Health Institute, Basel, Switzerland.
Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.

Fredros Okumu (F)

Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.
School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Republic of South Africa.
Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.

Samson Kiware (S)

Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.

Neil F Lobo (NF)

Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.

Hannah Koenker (H)

Johns Hopkins Center for Communication Programs, PMI VectorWorks Project, Baltimore, MD, USA.

Ellie Sherrard-Smith (E)

MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK.

John Gimnig (J)

Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Gerry F Killeen (GF)

Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania.
Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork, Republic of Ireland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH