A Fully Automated Deep Learning Network for Brain Tumor Segmentation.
BraTS
Brain tumor segmentation
CNN (convolutional neural networks)
Dense UNet
MRI
deep learning
machine learning
Journal
Tomography (Ann Arbor, Mich.)
ISSN: 2379-139X
Titre abrégé: Tomography
Pays: Switzerland
ID NLM: 101671170
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
entrez:
18
6
2020
pubmed:
18
6
2020
medline:
25
6
2021
Statut:
ppublish
Résumé
We developed a fully automated method for brain tumor segmentation using deep learning; 285 brain tumor cases with multiparametric magnetic resonance images from the BraTS2018 data set were used. We designed 3 separate 3D-Dense-UNets to simplify the complex multiclass segmentation problem into individual binary-segmentation problems for each subcomponent. We implemented a 3-fold cross-validation to generalize the network's performance. The mean cross-validation Dice-scores for whole tumor (WT), tumor core (TC), and enhancing tumor (ET) segmentations were 0.92, 0.84, and 0.80, respectively. We then retrained the individual binary-segmentation networks using 265 of the 285 cases, with 20 cases held-out for testing. We also tested the network on 46 cases from the BraTS2017 validation data set, 66 cases from the BraTS2018 validation data set, and 52 cases from an independent clinical data set. The average Dice-scores for WT, TC, and ET were 0.90, 0.84, and 0.80, respectively, on the 20 held-out testing cases. The average Dice-scores for WT, TC, and ET on the BraTS2017 validation data set, the BraTS2018 validation data set, and the clinical data set were as follows: 0.90, 0.80, and 0.78; 0.90, 0.82, and 0.80; and 0.85, 0.80, and 0.77, respectively. A fully automated deep learning method was developed to segment brain tumors into their subcomponents, which achieved high prediction accuracy on the BraTS data set and on the independent clinical data set. This method is promising for implementation into a clinical workflow.
Identifiants
pubmed: 32548295
doi: 10.18383/j.tom.2019.00026
pii: TOMO.2019.00026
pmc: PMC7289260
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
186-193Subventions
Organisme : NCI NIH HHS
ID : U01 CA207091
Pays : United States
Informations de copyright
© 2020 The Authors. Published by Grapho Publications, LLC.
Déclaration de conflit d'intérêts
Conflict of Interest: None reported
Références
Neuroimage. 2014 Oct 1;99:166-79
pubmed: 24879923
Med Image Anal. 2017 Feb;36:61-78
pubmed: 27865153
J Magn Reson Imaging. 2014 Jul;40(1):47-54
pubmed: 24753371
BMC Med Imaging. 2015 Aug 12;15:29
pubmed: 26263899
Sci Data. 2017 Sep 05;4:170117
pubmed: 28872634
Neuroimage. 2011 Feb 1;54(3):2033-44
pubmed: 20851191
Hum Brain Mapp. 2010 May;31(5):798-819
pubmed: 20017133
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10134:
pubmed: 28642629
Radiology. 2015 Apr;275(1):228-34
pubmed: 25486589
Front Comput Neurosci. 2019 Aug 13;13:56
pubmed: 31456678
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024
pubmed: 25494501
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251
pubmed: 26960222
Med Phys. 2017 Oct;44(10):5234-5243
pubmed: 28736864
Med Image Anal. 2017 Jan;35:18-31
pubmed: 27310171