Development and Verification of an Economical Method of Custom Target Library Construction.


Journal

ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658

Informations de publication

Date de publication:
09 Jun 2020
Historique:
received: 06 03 2020
accepted: 21 05 2020
entrez: 18 6 2020
pubmed: 18 6 2020
medline: 18 6 2020
Statut: epublish

Résumé

Although technological advances have greatly reduced the cost of DNA sequencing, sample preparation time and reagent costs remain the limiting factors for many studies. Based on low-cost targeted amplification, we developed an economical method for custom target library construction based on DNA nanoball (DNB) technology and two-step polymerase chain reaction (PCR). Here, we refer to this method as the two-step PCR, which was compared to traditional multiplex PCR methods in three aspects, data quality, efficiency, and specificity to humans. The results confirmed that two-step PCR reduces to finishing 128 sequencing libraries in only 2 h 24 min 59 s of the total PCR time and at a data utilization rate of 0.44 at a cost of approximately $1.70 per sample for targeted sequencing via the two-step PCR. The replacement of traditional multiplex PCR methods with this strategy makes the sample preparation process before sequencing relatively more cost-effective and further reduces the cost of next-generation sequencing (NGS). This method may also be free from the interference of other species and the limitations of sample type and DNA content. These findings reveal possibilities for broad applications of this approach in forensic research.

Identifiants

pubmed: 32548494
doi: 10.1021/acsomega.0c01014
pmc: PMC7288555
doi:

Types de publication

Journal Article

Langues

eng

Pagination

13087-13095

Informations de copyright

Copyright © 2020 American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

Mol Phylogenet Evol. 2005 Jul;36(1):169-87
pubmed: 15904864
BMC Genomics. 2019 Mar 13;20(1):215
pubmed: 30866797
Nat Rev Genet. 2010 Jan;11(1):31-46
pubmed: 19997069
Forensic Sci Int Genet. 2016 Jul;23:111-120
pubmed: 27082757
Eur J Hum Genet. 2018 Mar;26(3):314-323
pubmed: 29367707
PLoS One. 2015 Jan 30;10(1):e0115960
pubmed: 25635817
Psychol Rev. 2004 Apr;111(2):430-45
pubmed: 15065916
Bioinformatics. 2010 Apr 15;26(8):1029-35
pubmed: 20190250
Science. 2010 Jan 1;327(5961):78-81
pubmed: 19892942
Nat Methods. 2009 Apr;6(4):291-5
pubmed: 19287394
Electrophoresis. 2004 Jun;25(10-11):1397-412
pubmed: 15188225
Appl Environ Microbiol. 2013 Sep;79(17):5112-20
pubmed: 23793624
Forensic Sci Int Genet. 2017 Nov;31:135-148
pubmed: 28938154
Forensic Sci Int Genet. 2016 May;22:37-43
pubmed: 26844917
Forensic Sci Int Genet. 2017 May;28:52-70
pubmed: 28171784
Electrophoresis. 1999 Nov;20(17):3349-57
pubmed: 10608700
J Clin Lab Anal. 2002;16(1):47-51
pubmed: 11835531
PLoS One. 2016 Feb 01;11(2):e0148203
pubmed: 26828929
Hugo J. 2011 Dec;5(1-4):1-12
pubmed: 23205160
J Forensic Sci. 2008 Mar;53(2):335-41
pubmed: 18366565
Brief Bioinform. 2014 Nov;15(6):879-89
pubmed: 24067931
Nat Methods. 2008 Dec;5(12):1005-10
pubmed: 19034268
Trends Biotechnol. 2005 Jul;23(7):359-66
pubmed: 15927295
Biotechniques. 2014 Feb 01;56(2):61-4, 66, 68, passim
pubmed: 24502796
Science. 1991 Jun 21;252(5013):1643-51
pubmed: 2047872
DNA Seq. 2008 Jun;19(3):159-66
pubmed: 18464037
Microbiome. 2014 Feb 24;2(1):6
pubmed: 24558975
Clin Biochem Rev. 2011 Nov;32(4):177-95
pubmed: 22147957
Genome Res. 2012 May;22(5):939-46
pubmed: 22267522
Forensic Sci Int Genet. 2014 Sep;12:144-54
pubmed: 24997319
Front Microbiol. 2015 Jul 16;6:731
pubmed: 26236305
Forensic Sci Int Genet. 2019 Nov;43:102147
pubmed: 31437781
Value Health. 2018 Sep;21(9):1048-1053
pubmed: 30224108
PLoS One. 2013 Apr 12;8(4):e60204
pubmed: 23593174
Nat Methods. 2010 Feb;7(2):111-8
pubmed: 20111037
Forensic Sci Int Genet. 2015 Nov;19:1-9
pubmed: 26036183
BMC Genomics. 2018 May 30;19(1):416
pubmed: 29848309
Biotechniques. 2013 Aug;55(2):69-74
pubmed: 23931594
Syst Biol. 2018 Jul 1;67(4):594-615
pubmed: 29342307
BMC Bioinformatics. 2019 Mar 25;20(1):153
pubmed: 30909888

Auteurs

Xinyao Miao (X)

School of Forensic Sciences, Xi'an Jiaotong University, 710049 Xi'an, P. R. China.

Bowen Li (B)

School of Life Sciences, Sichuan University, 610207 Chengdu, P. R. China.

Yuesheng Shen (Y)

School of Life Sciences, Northwest University, 710069 Xi'an, P. R. China.

Huiyun Yu (H)

School of Life Sciences, Northwest A&F University, 712100 Yangling, P. R. China.

Guoqiang Zhu (G)

Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065 Chengdu, P. R. China.

Chen Liang (C)

School of Mechanical Engineering, Xi'an Jiaotong University, 710049 Xi'an, P. R. China.

Xiao Fu (X)

The Beijing Genomics Institute (BGI)-Tianjin, 301700 Tianjin, P. R. China.

Chu Wang (C)

School of Life Sciences, Xiamen Medical College, 361023 Xiamen, P. R. China.

Shengbin Li (S)

School of Forensic Sciences, Xi'an Jiaotong University, 710049 Xi'an, P. R. China.

Bao Zhang (B)

School of Forensic Sciences, Xi'an Jiaotong University, 710049 Xi'an, P. R. China.

Classifications MeSH