A Perspective on Secondary Seed Dormancy in
Arabidopsis thaliana
abscisic acid
dormancy cycling
environmental factors
germination arrest
secondary seed dormancy
seed dormancy
Journal
Plants (Basel, Switzerland)
ISSN: 2223-7747
Titre abrégé: Plants (Basel)
Pays: Switzerland
ID NLM: 101596181
Informations de publication
Date de publication:
15 Jun 2020
15 Jun 2020
Historique:
received:
17
05
2020
revised:
08
06
2020
accepted:
12
06
2020
entrez:
19
6
2020
pubmed:
19
6
2020
medline:
19
6
2020
Statut:
epublish
Résumé
Primary seed dormancy is the phenomenon whereby seeds newly shed by the mother plant are unable to germinate under otherwise favorable conditions for germination. Primary dormancy is released during dry seed storage (after-ripening), and the seeds acquire the capacity to germinate upon imbibition under favorable conditions, i.e., they become non-dormant. Primary dormancy can also be released from the seed by various treatments, for example, by cold imbibition (stratification). Non-dormant seeds can temporarily block their germination if exposed to unfavorable conditions upon seed imbibition until favorable conditions are available. Nevertheless, prolonged unfavorable conditions will re-induce dormancy, i.e., germination will be blocked upon exposure to favorable conditions. This phenomenon is referred to as secondary dormancy. Relative to primary dormancy, the mechanisms underlying secondary dormancy remain understudied in
Identifiants
pubmed: 32549219
pii: plants9060749
doi: 10.3390/plants9060749
pmc: PMC7355504
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
ID : 31003A-179472/1
Références
Nature. 2010 Jun 3;465(7298):627-31
pubmed: 20336072
Plant Cell Environ. 2016 Aug;39(8):1737-48
pubmed: 26991665
Front Plant Sci. 2017 Apr 11;8:524
pubmed: 28443117
Plant J. 2015 Feb;81(3):413-25
pubmed: 25439058
J Exp Bot. 2017 Feb 1;68(4):843-856
pubmed: 28391330
Curr Opin Plant Biol. 2017 Feb;35:8-14
pubmed: 27710774
New Phytol. 2006;171(3):501-23
pubmed: 16866955
BMC Plant Biol. 2018 Oct 11;18(1):229
pubmed: 30309320
J Exp Bot. 2017 Feb 1;68(4):857-869
pubmed: 27729475
Trends Plant Sci. 2019 Nov;24(11):989-998
pubmed: 31327698
Elife. 2015 Mar 31;4:
pubmed: 25824056
Front Plant Sci. 2014 May 28;5:233
pubmed: 24904627
Plant Cell Environ. 2017 Aug;40(8):1474-1486
pubmed: 28240777
Plant J. 2020 Apr;102(2):327-339
pubmed: 31785171
Plant Cell. 2012 Jul;24(7):2826-38
pubmed: 22829147
Front Plant Sci. 2016 Dec 16;7:1884
pubmed: 28018412
Plant J. 2006 Jun;46(5):805-22
pubmed: 16709196
Plant J. 2007 May;50(3):452-65
pubmed: 17376157
New Phytol. 2020 Apr 8;:
pubmed: 32267972
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17042-7
pubmed: 17065317
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20236-41
pubmed: 22128331
Genetics. 2003 Jun;164(2):711-29
pubmed: 12807791
Ann Bot. 2016 Feb;117(2):249-56
pubmed: 26637384
Plant Cell Physiol. 2012 Jan;53(1):96-106
pubmed: 21937678
Plant Cell Environ. 2019 Apr;42(4):1318-1327
pubmed: 30652319
Planta. 2004 Jul;219(3):479-88
pubmed: 15060827
Am Nat. 2015 Feb;185(2):212-27
pubmed: 25616140
Plant Cell Environ. 2019 Aug;42(8):2325-2339
pubmed: 30986891
Elife. 2019 Mar 26;8:
pubmed: 30910007
J Exp Bot. 2018 Jun 27;69(15):3601-3608
pubmed: 29701795
J Exp Bot. 2014 Dec;65(22):6603-15
pubmed: 25240065
PLoS Genet. 2015 Dec 17;11(12):e1005708
pubmed: 26681322
Plant Mol Biol. 2009 Mar;69(4):463-72
pubmed: 19031046
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19108-13
pubmed: 20956298
Philos Trans R Soc Lond B Biol Sci. 2012 Jan 19;367(1586):291-7
pubmed: 22144391
Plant J. 2006 Mar;45(6):942-54
pubmed: 16507085
Plant Physiol. 2004 May;135(1):432-43
pubmed: 15122038
New Phytol. 2020 Mar;225(5):2035-2047
pubmed: 31359436
Biochem J. 2019 Oct 30;476(20):3019-3032
pubmed: 31657442