Modified Atmosphere Does Not Reduce the Efficacy of Phytosanitary Irradiation Doses Recommended for Tephritid Fruit Flies.
hypoxia
normoxia
oxygen effect
phytosanitation
radiation sensitivity
radioprotection
radioresistance
radiotolerance
Journal
Insects
ISSN: 2075-4450
Titre abrégé: Insects
Pays: Switzerland
ID NLM: 101574235
Informations de publication
Date de publication:
15 Jun 2020
15 Jun 2020
Historique:
received:
18
05
2020
revised:
05
06
2020
accepted:
10
06
2020
entrez:
19
6
2020
pubmed:
19
6
2020
medline:
19
6
2020
Statut:
epublish
Résumé
Phytosanitary irradiation (PI) has been successfully used to disinfest fresh commodities and facilitate international agricultural trade. Critical aspects that may reduce PI efficacy must be considered to ensure the consistency and effectiveness of approved treatment schedules. One factor that can potentially reduce PI efficacy is irradiation under low oxygen conditions. This factor is particularly important because storage and packaging of horticultural commodities under low oxygen levels constitute practices widely used to preserve their quality and extend their shelf life. Hence, international organizations and regulatory agencies have considered the uncertainties regarding the efficacy of PI doses for insects infesting fresh commodities stored under low oxygen levels as a rationale for restricting PI application under modified atmosphere. Our research examines the extent to which low oxygen treatments can reduce the efficacy of phytosanitary irradiation for tephritids naturally infesting fruits. The effects of normoxia (21% O
Identifiants
pubmed: 32549285
pii: insects11060371
doi: 10.3390/insects11060371
pmc: PMC7348963
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : USDA Agriculture Quarantine and Inspection (AQI) User Fee Program
ID : NA
Références
J Insect Physiol. 2018 May - Jun;107:186-196
pubmed: 29630918
Annu Rev Entomol. 2018 Jan 7;63:303-325
pubmed: 28992421
J Econ Entomol. 2010 Dec;103(6):1950-63
pubmed: 21309213
Pest Manag Sci. 2013 Dec;69(12):1315-25
pubmed: 23529838
J Econ Entomol. 2004 Aug;97(4):1245-8
pubmed: 15384333
J Econ Entomol. 2013 Oct;106(5):2020-6
pubmed: 24224242
J Exp Biol. 2012 Jun 15;215(Pt 12):2150-61
pubmed: 22623204
J Insect Physiol. 2010 May;56(5):447-54
pubmed: 19482033
J Econ Entomol. 2018 Feb 9;111(1):135-140
pubmed: 29294024
J Econ Entomol. 2018 Feb 9;111(1):141-145
pubmed: 29267933
Science. 1961 Aug 25;134(3478):533-8
pubmed: 13717053
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12913-12918
pubmed: 31182611
Annu Rev Physiol. 2011;73:95-113
pubmed: 20936942
Annu Rev Physiol. 2001;63:259-87
pubmed: 11181957
Int J Radiat Biol. 1994 Jan;65(1):27-33
pubmed: 7905906
Pest Manag Sci. 2020 Jul;76(7):2333-2341
pubmed: 32003078
Fly (Austin). 2011 Apr-Jun;5(2):119-25
pubmed: 21150317
Biometals. 2014 Dec;27(6):1323-35
pubmed: 25298233
Front Physiol. 2019 Mar 12;10:206
pubmed: 30914968
Insect Mol Biol. 2015 Dec;24(6):634-48
pubmed: 26387499
J Econ Entomol. 2004 Jun;97(3):824-7
pubmed: 15279260
Front Physiol. 2018 Aug 02;9:945
pubmed: 30116197
Pest Manag Sci. 2019 Mar;75(3):726-735
pubmed: 30101505
J Econ Entomol. 2014 Feb;107(1):185-97
pubmed: 24665701
Free Radic Biol Med. 2015 Dec;89:1122-43
pubmed: 26408245
J Biol Chem. 2006 Dec 15;281(50):38675-81
pubmed: 17040902
J Econ Entomol. 2017 Feb 1;110(1):80-86
pubmed: 28031469